Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec. 2022

Course:	Mathematical Physics -II
Semester:	III
Program:	BSC-H-PHYSICS-III.Int-BSC-MSC-PHYSICS-III.VR_B_2845
Course Code	PHYS 2024

Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
	Attempt all Questions (Short answer type)		
Q.1	Prove that all the roots of the equation $Z^4 = 1$ form an Abelian Group with 'Algebraic multiplication' as the operation; where Z is a complex number,	04	CO1
Q.2	Let G be a Group and H ₁ and H ₂ are subgroups of G; such that H1 \Leftrightarrow H ₂ and H ₂ \Leftrightarrow H ₁ (no element of H ₁ is in H ₂ and vice versa); prove that H ₁ U H ₂ is never a subgroup of G.	04	CO4
Q.3	How many independent components are there in a symmetric tensor of rank 4. The dimension of the space is 4.	04	CO4
Q.4	Discuss singularity in an Ordinary Differential Equation of the form $P_1(x).y'' + P_2(x).y' + P_3(x).y = 0$; where y'' is second differential of y w.r.t. x.	04	CO3
Q.5	Find the numerical values of a) $\sqrt{(5/2)}$ b) $\beta(1/2,2)$; where $$ and β are Gamma and beta functions, respectively.	04	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		1
	Attempt all questions. Please note that Q.9 has a choice.		

Q.6	Solve the following Ordinary Differential Equation by Frobenius method. $\frac{d^2y}{dx^2 + x^2y} = 0$	10	CO3	
Q.7	Solve the partial differential equation by separation of variable method $\left[\frac{\partial u(x,y)}{\partial x} = 2\frac{\partial u(x,y)}{\partial y} + u\right]; \text{ initial condition is } u(x,0) = 6 \exp(-3x)$	10	CO3	
Q.8	Evaluate the integral $\int_{-\infty}^{\infty} (2 - 3x + 2x^2 + 5x^3)P_3(x)dx$ Where, P ₃ (x) is the Legendre polynomial. HINT : You may need to use the orthogonality condition for Legendre Polynomial	10	CO3	
Q.9	Attempt any one (Either I or II) I: Starting from Rodrigue's formula $H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$ Prove the Recurrence relation: $H_{n+1}(x) = 2x \cdot H_n(x) - 2n \cdot H_{n-1}(x)$ OR		CO4	
	 II. A measurement of a physical quantity (x) gives results with probability p(x) = A. x ; -a ≤x ≤ a; = 0; everywhere else a) Normalize p(x) and find A b) Find <x>; mean of the measurements</x> c) Find <x<sup>2></x<sup> d) Find the standard deviation of the measurements 	10	CO4	
SECTION-C (2Qx20M=40 Marks)				
	Attempt all questions. Please note that Q. 11 has a choice.			

Q.10	(V = 0) $(V = 0)$	in the ded by the initial	CO3
Q.11	Attempt any one (Either I or II):		
	I. Use Rodrigue's Formula		
	$P_n(x) = \left(\frac{1}{n! \cdot 2^n}\right) \cdot \frac{d^n}{dx^n} \ (x^2 - 1)^n$	20	CO4
	to evaluate $P_n(x)$ for $n = 0, 1, 2$ and 3		
	and hence, expand the function $f(x) = x^4+2x^3+2x^2-x-3$ in ter Legendre polynomials.	rms of	
	OR		
	II Statement: Two infinite parallel are held at potential V=0 and ar separated by a distance d. A this connecting these plates is kept a $V(x,y=0) = V_0Sin(2\pi x/d)$; as show the figure below.	e rd plate at	
	Find $V(x,y)$ in the space between the three plates.	20	CO4