Name: Enrolment No:		TVO	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Attempt all Questions (Short answer type)			
Q. 1	Prove that all the roots of the equation $\mathrm{Z}^{4}=1$ form an Abelian Group with 'Algebraic multiplication' as the operation; where Z is a complex number,	04	CO1
Q. 2	Let G be a Group and H_{1} and H_{2} are subgroups of G ; such that $\mathrm{H} 1 \subset \mathrm{H}_{2}$ and $\mathrm{H}_{2} \not \subset \mathrm{H}_{1}$ (no element of H_{1} is in H_{2} and vice versa); prove that $\mathrm{H}_{1} \mathrm{U}$ H_{2} is never a subgroup of G.	04	CO4
Q. 3	How many independent components are there in a symmetric tensor of rank 4. The dimension of the space is 4 .	04	CO4
Q. 4	Discuss singularity in an Ordinary Differential Equation of the form $P_{1}(x) \cdot y^{\prime \prime}+P_{2}(x) \cdot y^{\prime}+P_{3}(x) \cdot y=0$; where $y^{\prime \prime}$ is second differential of y w.r.t. x.	04	CO3
Q. 5	Find the numerical values of a) $\sqrt{ }(5 / 2)$ b) $\beta(1 / 2,2)$; where $\sqrt{ }$ and β are Gamma and beta functions, respectively.	04	CO2
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$			
Attempt all questions. Please note that Q. 9 has a choice.			

Q. 6	Solve the following Ordinary Differential Equation by Frobenius method. $d^{2} y / d x^{2}+x^{2} y=0$	10	$\mathrm{CO3}$
Q. 7	Solve the partial differential equation by separation of variable method $\left[\frac{\partial u(x, y)}{\partial x}=2 \frac{\partial u(x, y)}{\partial y}+u\right] ;$ initial condition is $u(x, 0)=6 \exp (-3 \mathrm{x})$	10	$\mathrm{CO3}$
Q. 8	Evaluate the integral $\int_{-\infty}^{\infty}\left(2-3 x+2 x^{2}+5 x^{3}\right) P_{3}(x) d x$ Where, $\mathrm{P}_{3}(\mathrm{x})$ is the Legendre polynomial. HINT: You may need to use the orthogonality condition for Legendre Polynomial	10	$\mathrm{CO3}$
Q. 9	Attempt any one (Either I or II) I: Starting from Rodrigue's formula $H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}}$ Prove the Recurrence relation: $\mathrm{H}_{\mathrm{n}+1}(\mathrm{x})=2 \mathrm{x} \cdot \mathrm{H}_{\mathrm{n}}(\mathrm{x})-2 \mathrm{n} \cdot \mathrm{H}_{\mathrm{n}-1}(\mathrm{x})$ OR II. A measurement of a physical quantity (x) gives results with probability $\mathrm{p}(\mathrm{x})=\mathrm{A} .\|\mathrm{x}\| ;-\mathrm{a} \leq \mathrm{x} \leq \mathrm{a}$; = 0; everywhere else a) Normalize $p(x)$ and find A b) Find $\langle x\rangle$; mean of the measurements c) Find $\left\langle x^{2}\right\rangle$ d) Find the standard deviation of the measurements	10	$\mathrm{CO} 4$ $\mathrm{CO4}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
	Attempt all questions. Please note that Q. 11 has a choice.		

