| Name:
 Enrolment No: |
| :--- | :--- | :--- | :--- | :--- |
| Course: Complex Analysis |
| Program: B. Sc. (Hons.) Mathematics + Int. BSc-MSc Mathematics |
| Course Code: MATH 2049 |
| Instructions: All questions are compulsory. There is an internal choice in Q9 and Q11 only. |

	OR Evaluate $\oint_{C} \frac{\sin z \cos ^{2} z+z^{2022}}{e^{z}} d z$ where C is an arbitrary closed simple curve on complex plane.		
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	Consider $f(z)=\frac{e^{\frac{1}{z}}}{1-\cos z}$. (i) Determine all the singularities of $f(z)$. (ii) Discuss the nature of $f(z)$ at $z=0$. (iii) Find the value of $\oint_{C} z^{2} f(z) d z$ where C is $\|z\|=1$ counterclockwise. (iv) Find the order of poles at $z=2 \pi k, k \in \mathbb{Z} \backslash\{0\}$.	20	CO 3
Q11	Evaluate the real integral $\int_{0}^{\infty} \frac{\sin m x}{x} d x,(m>0)$ by clearly showing how the value of the integral $\int \frac{e^{i m z}}{z} d z \rightarrow 0$ along the semicircular arc in upper half complex plane. OR Find the principal value of the real integral $\int_{-\infty}^{\infty} \frac{\sin x}{x\left(x^{2}-x+2\right)} d x$ by clearly showing how the value of the integral $\int \frac{e^{i z}}{z\left(z^{2}-z+2\right)} d z \rightarrow 0$ along the semicircular arc in upper half complex plane.	20	CO4

