Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Program Name	:
Course Name	:
Course Code	:
Nos. of page(s)	:
Instructions:	

B. Sc. (H) Mathematics & Integrated B.Sc. Mathematics
Ordinary Differential Equations
MATH 2048

02

Semester : III Time : 03 Hrs. Max Marks : 100

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (Each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 8 and 11 have internal choice.

	SECTION A		
S. No.		Marks	СО
Q 1	Under what condition the following differential equation (ax + y)dx + (kx + by)dy = 0 is exact.	4	CO1
Q 2	Find the general solution and singular solution(s) of the differential equation $8ap^3 = 27y$.	4	CO2
Q 3	Find the particular integral of the differential equation $(D^4 + 3D^2)y = 108x^2; D \text{ stands for } \frac{d}{dx}.$	4	CO3
Q 4	When a switch is closed in circuit containing a battery <i>E</i> , a resistor <i>R</i> and an inductance <i>L</i> , the current <i>i</i> builds up at a rate given by $L\frac{di}{dt} + Ri = E.$ Find <i>i</i> as a function of <i>t</i> .	4	CO4
Q 5	Classify the critical point (0, 0) of the linear system $X' = AX$ where $A = \begin{bmatrix} -10 & 6\\ 15 & -19 \end{bmatrix}.$	4	CO5
	SECTION B		
Q 6	Show that the equation of the curve whose differential equation is $p^2 + 2py \cot x = y^2$ and passing through the point $\left(\frac{\pi}{2}, 1\right)$ is $\left[2y - \sec^2\left(\frac{x}{2}\right)\right] \left[2y - \csc^2\left(\frac{x}{2}\right)\right]$.	10	CO2

Q 7	Reduce the differential equation $(px^2 + y^2)(px + y) = (p + 1)^2$ to Clairaut's form by the substitutions $u = xy$, $v = x + y$ and then obtain the complete primitive.	10	CO2				
Q 8	Apply the method of variation of parameters to solve the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x + \cos x.$ OR Using the method of undetermined coefficients to solve the following differential equation: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^x - 10\sin x.$	10	CO3				
Q 9	A body whose temperature T is initially $200^{\circ}C$ is immersed in a liquid when temperature T is constantly $100^{\circ}C$. If the temperature of the body is $150^{\circ}C$ at t = 1 minute, what is the temperature at $t = 2$ minutes?	10	CO4				
	SECTION-C						
Q 10	If $M(x,y)dx + N(x,y)dy = 0$ and $P(x,y)dx + Q(x,y)dy = 0$ are exact differential equations, then show that $(M + P)dx + (N + Q)dy = 0$ is also an exact differential equation. Also, Solve the differential equation $(3x^2y^3e^y + y^3 + y^2)dx + (x^3y^3e^y - xy)dy = 0.$	20	CO1				
Q 11	Solve the Cauchy-Euler homogeneous differential equation $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + y = x^{-1}[1 + \log_e x \sin(\log_e x)], x > 0.$ OR Define Wronskian. Show that the Wronskian of the functions x^2 and $x^2 \log_e x$ is non zero. Can these functions be independent solutions of an ordinary differential equation? If so, determine the differential equation.	20	CO3				