Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022			
SECTION A			
S. No.		Marks	CO
Q 1	Under what condition the following differential equation $(a x+y) d x+(k x+b y) d y=0$ is exact.	4	CO1
Q 2	Find the general solution and singular solution(s) of the differential equation $8 a p^{3}=27 y$.	4	CO2
Q 3	Find the particular integral of the differential equation $\left(D^{4}+3 D^{2}\right) y=108 x^{2} ; D \text { stands for } \frac{d}{d x}$	4	CO3
Q 4	When a switch is closed in circuit containing a battery E, a resistor R and an inductance L, the current i builds up at a rate given by $L \frac{d i}{d t}+R i=E$ Find i as a function of t.	4	CO4
Q 5	Classify the critical point $(0,0)$ of the linear system $X^{\prime}=A X$ where $A=\left[\begin{array}{cc} -10 & 6 \\ 15 & -19 \end{array}\right]$	4	CO5
SECTION B			
Q 6	Show that the equation of the curve whose differential equation is $p^{2}+2 p y \cot x=y^{2}$ and passing through the point $\left(\frac{\pi}{2}, 1\right)$ is $\left[2 y-\sec ^{2}\left(\frac{x}{2}\right)\right]\left[2 y-\csc ^{2}\left(\frac{x}{2}\right)\right]$.	10	CO2

Q 7	Reduce the differential equation $\left(p x^{2}+y^{2}\right)(p x+y)=(p+1)^{2}$ to Clairaut's form by the substitutions $u=x y, v=x+y$ and then obtain the complete primitive.	10	$\mathrm{CO2}$
Q 8	Apply the method of variation of parameters to solve the differential equation $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=x+\cos x$ OR Using the method of undetermined coefficients to solve the following differential equation: $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=2 e^{x}-10 \sin x$	10	$\mathrm{CO3}$
Q 9	A body whose temperature T is initially $200^{\circ} \mathrm{C}$ is immersed in a liquid when temperature T is constantly $100^{\circ} \mathrm{C}$. If the temperature of the body is $150^{\circ} \mathrm{C}$ at $t=1$ minute, what is the temperature at $t=2$ minutes?	10	$\mathrm{CO4}$
SECTION-C			
Q 10	If $M(x, y) d x+N(x, y) d y=0$ and $P(x, y) d x+Q(x, y) d y=0$ are exact differential equations, then show that $(M+P) d x+(N+Q) d y=0$ is also an exact differential equation. Also, Solve the differential equation $\left(3 x^{2} y^{3} e^{y}+y^{3}+y^{2}\right) d x+\left(x^{3} y^{3} e^{y}-x y\right) d y=0$	20	$\mathrm{CO1}$
Q 11	Solve the Cauchy-Euler homogeneous differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+y=x^{-1}\left[1+\log _{e} x \sin \left(\log _{e} x\right)\right], x>0$ OR Define Wronskian. Show that the Wronskian of the functions x^{2} and $x^{2} \log _{e} x$ is non zero. Can these functions be independent solutions of an ordinary differential equation? If so, determine the differential equation.	20	CO

