Name: Enrolment No:			
Course: Analytical Geometry Semester: Program: B.Sc. (H) Mathematics \& Int. B.Sc. M.Sc. Mathematics Time : Course Code: MATH 2047 Max. Marks: Instructions: Read all the below mentioned instructions carefully and follow them strictly: 1) Mention Roll No. at the top of the question paper. 2) Attempt all the parts of a question at one place only.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Show that the line $4 x-y=17$ is a diameter of the circle $x^{2}+y^{2}-$ $8 x+2 y=0$.	4	CO1
Q 2	Find the pole of the line $l x+m y+n=0$ with respect to the parabola $y^{2}=4 a x$.	4	CO 2
Q 3	Under what condition the circles $x^{2}+y^{2}+2 g x+2 f y+c=0$ and $x^{2}+y^{2}+2 g_{1} x+2 f_{1} y+c_{1}=0$ are orthogonal to each other.	4	CO3
Q 4	Derive the equation of normal at (α, β) to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.	4	CO3
Q 5	Calculate the length of latus rectum to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.	4	CO 2
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Find the equation to the cylinder whose axis is the straight line $\frac{x}{l}=\frac{y}{m}=$ $\frac{z}{n}$ and the guiding curve is the conic $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+$ $c=0, z=0$.	10	$\mathrm{CO4}$
Q 7	Obtain the tangent plane to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ which is parallel to the plane $l x+m y+n z=0$.	10	CO 3
Q 8	A circle of radius r is concentric with the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Prove that each common tangent is inclined to the axis at an angle $\tan ^{-1} \sqrt{\frac{r^{2}-b^{2}}{b^{2}-r^{2}}}$ and towards its length.	10	CO2

Q 9	From the point $P(1,2,3), P N$ is drawn perpendicular to the line $\frac{x-2}{3}=$ $\frac{y-3}{4}=\frac{z-4}{5}$. Find the distance of $P N$ and co-ordinates of N. OR The equations to $A B$ are $\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}$ through a point $P(1,2,3), P N$ is drawn perpendicular to $A B$, and $P Q$ is drawn parallel to the plane $3 x+$ $4 y+5 z=0$ to meet $A B$ in Q. Find the equations of $P N$ and $P Q$.	10	CO1
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Prove that the equation $2 x^{2}+2 y^{2}+7 z^{2}-10 y z-10 z x+2 x+2 y-$ $17=0$ represents a cone whose vertex is at $(2,2,1)$.	20	$\mathrm{CO4}$
Q 11	Suppose A is a point on $O X$ and B on $O Y$, so that the angle $O A B$ is constant $(=\alpha)$. On $A B$ as diameter a circle is described whose plane is parallel to $O Z$. Prove that as $A B$ varies, the circle generates the conic $2 x y-z^{2} \sin ^{2} 2 \alpha=0$. OR A sphere of radius R passes through the origin. Show that the extremities of the diameter parallel to the x-axis lie on each of the spheres $x^{2}+y^{2}+$ $z^{2} \pm 2 R x=0$.	20	$\mathrm{CO4}$

