Name:

Enrolment No:

III : 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Analytical Geometry	Semester:	III
Program: B.Sc. (H) Mathematics & Int. B.Sc. M.Sc. Mathematics	Time	: 03 hr
Course Code: MATH 2047	Max. Marks: 100	

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Mention Roll No. at the top of the question paper.
- 2) Attempt all the parts of a question at one place only.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Show that the line $4x - y = 17$ is a diameter of the circle $x^2 + y^2 - 8x + 2y = 0$.	4	CO1
Q 2	Find the pole of the line $lx + my + n = 0$ with respect to the parabola $y^2 = 4ax$.	4	CO2
Q 3	Under what condition the circles $x^2 + y^2 + 2gx + 2fy + c = 0$ and $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ are orthogonal to each other.	4	CO3
Q 4	Derive the equation of normal at (α, β) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	4	CO3
Q 5	Calculate the length of latus rectum to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		1
Q 6	Find the equation to the cylinder whose axis is the straight line $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$ and the guiding curve is the conic $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, $z = 0$.	10	CO4
Q 7	Obtain the tangent plane to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ which is parallel to the plane $lx + my + nz = 0$.	10	CO3
Q 8	A circle of radius <i>r</i> is concentric with the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Prove that each common tangent is inclined to the axis at an angle $tan^{-1}\sqrt{\frac{r^2-b^2}{b^2-r^2}}$ and towards its length.	10	CO2

Q 9	From the point <i>P</i> (1, 2, 3), <i>PN</i> is drawn perpendicular to the line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$. Find the distance of <i>PN</i> and co-ordinates of <i>N</i> . OR	10	CO1		
	The equations to <i>AB</i> are $\frac{x}{2} = \frac{y}{-3} = \frac{z}{5}$ through a point <i>P</i> (1, 2, 3), <i>PN</i> is drawn perpendicular to <i>AB</i> , and <i>PQ</i> is drawn parallel to the plane $3x + 4y + 5z = 0$ to meet <i>AB</i> in <i>Q</i> . Find the equations of <i>PN</i> and <i>PQ</i> .	-			
SECTION-C (2Qx20M=40 Marks)					
Q 10	Prove that the equation $2x^2 + 2y^2 + 7z^2 - 10yz - 10zx + 2x + 2y - 17 = 0$ represents a cone whose vertex is at (2, 2, 1).	20	CO4		
	Suppose A is a point on <i>OX</i> and B on <i>OY</i> , so that the angle <i>OAB</i> is constant (= α). On <i>AB</i> as diameter a circle is described whose plane is parallel to <i>OZ</i> . Prove that as <i>AB</i> varies, the circle generates the conic $2xy - z^2 sin^2 2\alpha = 0$.				
Q 11	OR	20	CO4		
	A sphere of radius <i>R</i> passes through the origin. Show that the extremities of the diameter parallel to the <i>x</i> -axis lie on each of the spheres $x^2 + y^2 + z^2 \pm 2Rx = 0$.				