Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Condensed Matter Physics I Program: MSc (Physics) Course Code: PHYS 8018 Semester: II Time: 03 hours Max. Marks: 100

Instructions:

- All questions are compulsory (**Q9** and **Q11** have an internal choice).
- Scientific calculators can be used for calculations.

SECTION A (5Q x 4M = 20 Marks)

S. No.		Marks	СО	
Q1	How does the Hartree-Fock theory account for the electron-electron interaction?	4	CO1	
Q2	Draw the diagrams to illustrate the emission and absorption of phonons in the context of electron-phonon interaction.	4	CO1	
Q3	Explain Jahn-Teller effect.	4	CO2	
Q4	Draw and explain the Doniach-phase diagram.	4	CO3	
Q5	How does the quantum Hall effect differ from the classical Hall effect?	4	CO5	

SECTION B

(4Qx10M= 40 Marks)

Q6	What is the benefit of occupation number representation over a Slater determinant? Write Slater determinant for a system of N particles.	10	CO1
Q7	Discuss the Weiss model of antiferromagnetism.	10	CO2

Q8	Discuss the essential features of an integral quantum Hall effect. Illustrate with the help of a diagram.	10	CO5	
Q9	Illustrate the crystal electric field splitting of free <i>d</i> -ions in octahedral and tetrahedral environments.	10	CO2	
	OR			
	Illustrate the magnetic susceptibility of a single crystal with the help of a diagram for an antiferromagnetic material. Why is the susceptibility along the easy axis different from that along the hard axis?	10		
	SECTION-C			
	(2Qx20M=40 Marks)			
Q10	a) Describe the important properties of a topological insulator.	10	CO4	
	b) Illustrate the Weyl semi-metal behavior with the help of an experimental observation.	10		
Q11	a) What do you understand by a quantum phase transition? Discuss the scaling behaviour near a quantum critical point.	10		
	b) What is meant by the statement: "the time reversal symmetry is an antiunitary operator". How does the action of time reversal differ in the case of integer and half-integer spin?	10		
	OR C			
	a) What do you understand by parity transformation? What is the difference between the pseudo-vectors and pseudo-scalars? Illustrate with example.	10		
	b) Discuss the properties of heavy fermion and non-Fermi liquid systems.	10		