Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Program: M.Sc. Petroleum Geosciences

Course: Unconventional Reservoir Engineering

Semester : 3rd

Time : 03 hrs.

Course Code: PEGS8018

Max. Marks: 100

Nos. of page(s): 01

Instructions: All questions are compulsory. Assume if any data is missing.

SECTION A (5Qx4M=20Marks)

	(3QX4WI-20WIaiKS)		
S. No.		Marks	CO
Q 1	Write the effect of bubble point pressure on gas oil ratio. Also define solution GOR.	4	CO1
Q 2	Describe the wettability and surface tension.	4	CO1
Q 3	Differentiate between low shrinkage oil and high shrinkage oil reservoir.	4	CO1
Q 4	Calculate the porosity on the basis of given data for a cylindrical core sample: Clean dry weight of sample = 300 gm, Weight of sample with pores completely filled (100% saturated) with a 1.05 specific gravity of brine = 320 gm, Diameter of sample = 3 cm, Length of sample = 8 cm.	4	CO2
Q 5	Explain the gas formation volume factor and oil formation volume factor.	4	CO1
	SECTION B		•
	(4Qx10M = 40 Marks)		
Q 6	Explain the low-shrinkage crude oil and high-shrinkage (volatile) crude oil with the help of suitable phase diagrams.	10	CO3
Q 7	Calculate the arithmetic average and thickness-weighted average from the following measurements: Sample Thickness, ft Porosity, %	10	CO2
Q 8	Describe the two phase relative permeability curve for oil and water system.	10	CO2

Q 9	An oil reservoir exists at its bubble-point pressure of 4000 psia and temperature of 180 °F. The oil has an API gravity of 42° and gas-oil ratio of 800 scf/STB. The following additional data are also available: • Reservoir area = 640 acres • Average thickness = 10 ft • Effective porosity = 15% Calculate the specific gravity of the stock-tank oil, pore volume and bulk volume.	10	CO2	
SECTION-C (2Qx20M=40 Marks)				
Q 10	Describe the following with the help of suitable diagrams/curves: a. Depletion drive b. Gas cap drive c. Water drive d. Gravity drainage drive	20	CO3	
Q 11	Discuss the material balance equation and derive an equation of initial oil in place for solution gas drive and solution gas- Gas-cap drive.	20	CO4	