Name:

Enrolment No:

Course Code: MATH 2032K

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Logic and Sets Semester: III

Program: B.Sc. (H) Mathematics and Int. B.Sc. - M.Sc. Mathematics

Max. Marks: 100

: 03 hrs.

Time

Instructions: Attempt all the questions. All the questions are compulsory.

mstruc	ctions: Attempt all the questions. All the questions are compulsory.			
SECTION A				
(5Qx4M=20Marks)				
S. No.		Marks	CO	
Q 1	If p be "He is intelligent" and q be "He is tall". Write each statement in symbolic form using p and q .			
	(i). He is tall but not intelligent.	4M	CO1	
	(ii). He is neither tall nor intelligent.			
Q 2	Determine whether the proposition $\sim p \rightarrow (p \land q)$ is a tautology, contingency or contradiction.	4M	CO2	
Q 3	Let $A = \{a, b, c, d, e\}, B = \{a, b, d, f, g\}, C = \{b, c, h\}$, then determine	4M		
	(i). $A \setminus (B \cup C)$		CO3	
	(ii). $(A \cup B) \setminus C$			
Q 4	Let $B_n = [n, 2n]$, then find (i) $B_5 \cap B_8$, (ii) $B_1 \cap B_2 \cap B_3$.	4M	CO4	
Q 5	Define the partial order relation with an example.	4M	CO5	
	SECTION B			
	(4Qx10M=40 Marks)			
Q 6	Show that the proposition $[p \to (q \lor r)] \cong [(p \to q) \lor (p \to r)]$ is equivalent or not?	10M	CO1	
Q 7	Determine the validity of the argument			
	If I study, then I will not fail in Mathematics.			
	If I do not play football, then I will study.	10M	CO1	
	But I failed in Mathematics.			
	Thus, I will play football.			

Q 8	Out of 250 candidates who failed in an examination, it was revealed that 128				
	failed in Mathematics, 87 in Physics, and 134 in Computer. 31 failed in				
	Mathematics and in Physics, 54 failed in Computer and in Mathematics, 30	10M			
	failed in the Computer and in Physics. Find how many candidate failed:				
	(i) In all the three subjects.		CO4		
	(ii) In Mathematics but not in Physics.				
	(iii) In the Computer but not in Mathematics.				
	(iv) In Physics but not in the Computer or in Mathematics.				
	(v) In the Computer or in Mathematics, but not in Physics.				
Q 9	Let $A = \{1, 2, 3, 4, 6, 8, 12, 24, 48\}$ and R be a partial order relation of				
	divisibility on A. Let $B = \{2, 3, 4, 6, 12\}$ be a subset of A, then draw the	10M	CO5		
	Hasse's diagram of (A, R) and also determine				
	(i) the least upper bound of B and (ii) the greatest lower bound of B .				
SECTION-C					
(2Qx20M=40 Marks)					
Q 10A	Show that the set of all odd integers is a countable set.	10M			
			CO3		
Q 10B	State and prove the associative laws for sets.	10M			
Q 11A	Determine the principal disjunctive normal form (PDNF) of $(\sim p \rightarrow r) \land (p \leftrightarrow q)$.	10M			
Q 11B	If $D = \{10, 11, 12, 13,, 19\}$. Determine the truth value of each of the following statements.	10M			
	(i). $(\forall x \in D), x + 14 < 25$				
	(ii). $(\exists x \in D), x + 14 = 20$				
	(iii). $(\forall x \in D), x + 14 \le 20$				
	(iv). $(\exists x \in D), x + 14 > 25.$		CO2		
	OR				
Q 11A	Determine the principal conjunctive normal form (PCNF) of $(q \land p) \lor (\sim q \land r)$.	10M			
Q 11B	Write the negation of the following statements and also determine their truth values.	10M			
	(i). All real numbers are less than 8. (ii). For all natural numbers x , if $x > 3$ then $x^2 > 9$.				
		l	<u> </u>		