Name: Enrolment No:			
Course: Logic and Sets Semester: III Program: B.Sc. (H) Mathematics and Int. B.Sc. - M.Sc. Mathematics Time :03 her Course Code: MATH 2032K Max. Marks: 100 Instructions: Attempt all the questions. All the questions are compulsory.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	If p be "He is intelligent" and q be "He is tall". Write each statement in symbolic form using p and q. (i). He is tall but not intelligent. (ii). He is neither tall nor intelligent.	4M	CO1
Q 2	Determine whether the proposition $\sim p \rightarrow(p \wedge q)$ is a tautology, contingency or contradiction.	4M	CO2
Q 3	Let $A=\{a, b, c, d, e\}, B=\{a, b, d, f, g\}, C=\{b, c, h\}$, then determine (i). $A \backslash(B \cup C)$ (ii). $(A \cup B) \backslash C$	4M	$\mathrm{CO3}$
Q 4	Let $B_{n}=[n, 2 n]$, then find (i) $B_{5} \cap B_{8}$, (ii) $B_{1} \cap B_{2} \cap B_{3}$.	4M	CO4
Q 5	Define the partial order relation with an example.	4M	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Show that the proposition $[p \rightarrow(q \vee r)] \cong[(p \rightarrow q) \vee(p \rightarrow r)]$ is equivalent or not?	10M	CO1
Q 7	Determine the validity of the argument If I study, then I will not fail in Mathematics. If I do not play football, then I will study. But I failed in Mathematics. Thus, I will play football.	10M	CO1

Q 8	Out of 250 candidates who failed in an examination, it was revealed that 128 failed in Mathematics, 87 in Physics, and 134 in Computer. 31 failed in Mathematics and in Physics, 54 failed in Computer and in Mathematics, 30 failed in the Computer and in Physics. Find how many candidate failed: (i) In all the three subjects. (ii) In Mathematics but not in Physics. (iii) In the Computer but not in Mathematics. (iv) In Physics but not in the Computer or in Mathematics. (v) In the Computer or in Mathematics, but not in Physics.	10M	CO4
Q 9	Let $A=\{1,2,3,4,6,8,12,24,48\}$ and R be a partial order relation of divisibility on A. Let $B=\{2,3,4,6,12\}$ be a subset of A, then draw the Hasse's diagram of (A, R) and also determine (i) the least upper bound of B and (ii) the greatest lower bound of B.	10M	CO5
$\begin{gathered} \text { SECTION-C } \\ (2 \mathrm{Qx} 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
$\begin{aligned} & \hline \text { Q 10A } \\ & \text { Q 10B } \end{aligned}$	Show that the set of all odd integers is a countable set. State and prove the associative laws for sets.	$\begin{aligned} & 10 \mathrm{M} \\ & 10 \mathrm{M} \end{aligned}$	CO3
Q 11A		10M	
Q 11B	If $D=\{10,11,12,13, \ldots, 19\}$. Determine the truth value of each of the following statements. (i). $\quad(\forall x \in D), x+14<25$ (ii). $\quad(\exists x \in D), x+14=20$ (iii). $\quad(\forall x \in D), x+14 \leq 20$ (iv). $\quad(\exists x \in D), x+14>25$.	10M	CO 2
Q 11A	OR Determine the principal conjunctive normal form (PCNF) of $(q \wedge p) \vee(\sim q \wedge r)$.	10M	
Q 11B	Write the negation of the following statements and also determine their truth values. (i). All real numbers are less than 8 . (ii). For all natural numbers x, if $x>3$ then $x^{2}>9$.	10M	

