Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2022

Programme Name: M.Tech., PE Semester : I

: Reservoir Engineering **Course Name** Time : 03 hrs

Course Code : PEAU 7002 **Max. Marks** : 100

Nos. o	of page(s) : 2		
Instru	ctions: 1. Assume any data missing.		
	2. Maintain a minimum of three decimal accuracy.		
SNo	SECTION A (5*4=20M)	Marks	CO
Q 1	Define permeability and list various types of permeabilities based on the fluids phases.	4	CO1
Q 2	Define effective porosity and mention its significance.	4	CO1
Q 3	Define cricondentherm and retrograde condensation.	4	CO2
Q 4	Define Darcy's law.	4	CO3
Q 5	List various types of decline curves used to analyze production rate.	4	CO4
	SECTION B (4*10=40M)		
Q 6	Describe with a neat diagram the saturation method for estimating the pore volume of a rock sample.	10	CO1
Q 7	Explain with a neat diagram the multi-component phase diagram of petroleum reservoir fluids.	10	CO2
Q 8	Derive an expression for radial flow rate Q of compressible gas with a viscosity of μ_g , flowing to a well bore of radius r_w under steady-state condition through a cylindrical geometry formation of permeability κ_g . Or A core is 3 in. long and 2 cm in diameter. When the core is maintained at an upstream pressure was 29.4 psia and downstream pressure was 14.7 psia, a flow rate of 10 cm ³ /sec of air ($\mu = 0.018$ cp) was recorded at downstream pressure. Calculate the permeability of the core in darcys.	10	CO3
Q9	The production rate-time relationship for the hyperbolic analysis is given by $q = q_i \ (1 + n \ D_i t)^{-1/n}$ From the above equation, derive for the production rate-cumulative production relationship given by $N_D = \frac{{q_i}^n}{(n-1) \ D_i} (q^{1-n} - q_i^{1-n})$ SECTION-C (2*20=40M)	10	CO4
Q10	Explain the various factors impacting the flow of fluids through porous hydrocarbon reservoirs.	20	CO3
Q11	Deduce the following General Material Balance equation	20	CO4

Q10	Explain the various factors impacting the flow of fluids through porous hydrocarbon	20	CO3		
	reservoirs.	20	COS		
011	Deduce the following General Material Balance equation	20	CO4		

$$\frac{N(B_t - B_{ti})}{N_p[B_t + B_g(R_p - R_{soi})]} + \frac{\frac{NmB_{io}}{B_{gi}}(B_g - B_{gi})}{N_p[B_t + B_g(R_p - R_{soi})]} + \frac{NB_{oi}(1 + m)\left(\frac{C_wSw_i + C_f}{1 - SW_i}\right)\Delta P}{N_p[B_t + B_g(R_p - R_{soi})]} + \frac{W_e - B_wW_p}{N_p[B_t + B_g(R_p - R_{soi})]} = 1$$
or

- i. List various methods available to estimate oil and gas reserves.
- ii. Derive for the production rate versus time and the production rate versus cumulative production expressions using exponential decline analysis.