Name: Enrolment No:				ⓊアえS		
Course Name: Fire Risk \& Control Programme: M Tech- HSE Course Code: HSFS 7007 No pages: 01				ND ENE n, Dec 20	Semester: I Time: 03 Hours Max. Marks: 100	
SECTION A Attempt all questions. Each question carries 4 Marks.						
Sr. No.	Question					CO
Q 1	Explain the various stages of fire.					CO1
Q 2	List out the various components of fire hydrants.					CO1
Q 3	Do the comparison of the Dry \& Wet types of the sprinkler system with their limitations.					CO3
Q 4	Comment on the effectiveness of portable fire-fighting systems along with their limitations.					CO3
Q 5	Discuss the role of autoignition temperature or burning temperature in the fire phenomenon.					CO1
SECTION B Attempt all questions. Each question carries 10 Marks.						
Q 6	Enumerate classes of standpipes and their application. OR List out the various factors affecting fire severity.					CO1
Q 7	Create a fire safety inspection checklist for the tank firm facility Justify the need for standard operating procedures with an example of controlling industrial fire accidents.					CO5
Q 8						CO4
Q 9	Explain mass loss rate and its applicability in the fire. Discuss the role of essential variables while predicting or calculating mass loss rate of a fuel.					CO2
SECTION CAttempt all questions. Each question carries 20 Marks.						
Q 10	Develop a fire safety plan for an occupancy (Commercial building) of low hazardous categories. OR (a) Explain various explosion protection principle and their effectiveness. (b) A manufacturing process industry uses the following material. Calculate the fire load by using the following data: -					O5
	Material	Quantity in Kg.	Area in Sq. mtr.	Calorific value		
	Paper	100	100	15650	3725.38	
	Wood	2000	300	17500	4179	
	Coal	10000	500	20000	4776	
	Rubber	500	200	40000	9552	
	Petroleum products	5000	400	43000	10268.4	
Q 11	(a) Calculate the h having a windo (b) A building con 15000 kg of co opening is 1.2	release rate f 2.4 m wide and artment of di ustible material calculate the	m a ventilat 1.2 m high. ensions 20 m , if the area aximum tem	ontrol fire 20 m dee open winc ure and tim	ning inside an enclosure of and 4 m high and contains is $72 \mathrm{~m}^{2}$ and height of the quivalent for the severity.	CO4

