Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Advanced Transport Phenomena Program: M. Tech Chemical Engineering Course Code: CHPD7018 Semester : I Time : 03 hrs. Max. Marks: 100

Instructions: 1) Answer the questions section wise in the answer booklet. 2) Assume suitable data wherever necessary. 3) The notations used here have the usual meanings.

SECTION A	
(3Qx10M=30Marks)	

S. No.		Marks	СО
Q 1	Show the qualitative comparison of laminar and turbulent velocity profiles with a neat diagram.	10	CO1
Q 2	Develop the generic equation of energy balance and state its importance for chemical engineering applications.	10	CO2
Q 3	Discuss about the transfer coefficients in one phase.	10	CO3
	SECTION B		I
	(3Qx15M= 45 Marks)		
Q 4	What is the required power output from the pump at steady state in the system shown in Fig. 1? Water at 68^{0} F ($\rho = 62.4$ lbm/ft ³ ; $\mu = 1.0$ cp) is to be delivered to the upper tank at a rate of 12 ft ³ /min. All of the piping is 4-in. internal diameter smooth circular pipe. The contribution to E_{v} from the sudden contraction, the three 90 ⁰ elbows, and the sudden expansion will be 0.45, 0.5 and 1, respectively.	15	CO1

Q 5	Develop the heat conduction equation for an electrically heated wire using the boundary condition of the heat flux at the wall is given by Newton's law of cooling. Assume that the heat transfer coefficient h and the ambient air temperature T_{air} are known.	15	CO2
Q 6	A solid material occupying the space from $y = 0$ to $y = \infty$ is initially at temperature T_0 . At time $t = 0$, the surface at $y = 0$ is suddenly raised to temperature T_1 and maintained at that temperature for $t > 0$. Find the time-dependent temperature profiles $T(y, t)$.	15	CO2
	SECTION-C (1Qx25M=25 Marks)		1
Q 7	a) Explain about the macroscopic mass balance equation. b) Derive expressions for diffusion through a spherical shell as shown in Fig. 2. Extend these results to describe the diffusion in a non-isothermal film in which the temperature varies radially according to $\frac{T}{T_1} = \left(\frac{r}{r_1}\right)^n$. Assume as a rough approximation that D_{AB} varies as the 3/2-power of the temperature: Temperature $T_2 = T_1 \left(\frac{r_2}{r_1}\right)^n$. Fig 2. Diffusion through a hypothetical spherical stagnant gas film surrounding a droplet of liquid A .	05 20	CO3