Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Fluid flow and heat transfer equipment design

Program: M. Tech (Chemical Engineering)

Semester: I Time: 3 hrs.

Course Code: CHPD7005

Max. Marks: 100

Instructions: The question paper consists of two sections. Answer the questions section wise in the answer booklet.

Note: Assume suitable data if necessary. Data sheets will be provided.

SECTION A

S. No.						Marks	СО
Q 1	A 20 cm diameter pipe carrying steam is provided with 5 cm thick insulation whose thermal conductivity varies with temperature as $k(T) = 0.062$ (1 + 0.362 X 10 ⁻² T) W/m °C where T is in °C. The temperature at the pipe surface and at the outer surface of the insulation are 275°C and 65°C respectively. Calculate (a) the rate of heat transfer per unit meter length of the pipe, (b) the temperature at the mid thickness of the insulation, and (c) the temperature gradients at the pipe surface, the mid thickness of the insulation, and the outside surface of the insulation. Sketch the temperature profile.					15	CO2
Q 2	Stream 1 2 3 4 A minimum the proble (a) The	changer network will in Supply temperature, TS (°C) 220 240 50 100 um temperature different em table for the network he minimum hot and col he hot and cold stream t	Target temperature, TT (°C) 150 60 190 210 ace of 10°C will be used and use it to determine d utility requirements	Heat capacity flow rate, CP (kW/°C) 2.0 3.0 2.5 4.0 1 for design purposes. See:	et up	15	CO4
Q 3		n detail about fluid mov		-		15	CO1
Q 4	What per cent increase in the radiant-section heat absorption may be expected in a boiler when the firing rate is increased 50 per cent? The initial ratio of absorption to liberation is 0.38, and the excess air is expected to increase from 25 to 40 per cent as a result of the increased firing rate.					15	CO5
			SECTION B				
Q 5	40,000 lb/hr of a 42°API kerosene leaves the bottom of a distilling column at 390°F and will be cooled to 200°F by 141,000 lb/hr of 34°API Mid-continent crude coming from storage at 100°F and heated to 170°F. A 10 psi pressure drop is permissible on both streams, a combined dirt factor of 0.003.					40	CO3

Available for this service is a $21 \frac{1}{4}$ in. ID exchanger having 158, 1 in. OD, 13 BWG	
tubes 16'0" long and laid out on $1\frac{1}{4}$ -in. square pitch. The bundle is arranged for four	
passes, and baffies are spaced 5 in. apart. Will the exchanger be suitable; i.e., what is	
the dirt factor?	