Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Computational Gas Dynamics Program: M. Tech. CFD Course Code: ASEG 7020 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: Assume missing data, if any, appropriately.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Discuss the conditions for occurrence of the following in the solution of			
	unsteady, one-dimensional Euler equations		GO 4	
	a) Compression wave	04	CO1	
	b) Expansion wave			
Q 2	Illustrate a first order upwind method for the linear advection equation using		CO3	
	wave speed splitting.	04		
Q 3	Define a Riemann problem for inviscid Burger's equation. Illustrate a typical	04	CO2	
	solution on an <i>x</i> - <i>t</i> plane.			
Q 4	Draw wave diagram of right running compression wave and discuss the	04	CO2	
	Rankine-Hugoniot condition for shock speed.			
Q 5	List down the various non-linear stability conditions for the solution of one-			
	dimensional Euler equations.	04	CO4	
SECTION B (4Qx10M= 40 Marks)				
Q 6	The 1-D unsteady Euler equations, in primitive variable form, are given by			
	$\boldsymbol{U}_t + [A]\boldsymbol{U}_x = 0$ where	10	CO1	
	$\boldsymbol{U} = [ho, u, p]^T$			

	and $[A] = \begin{bmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \rho a^2 & u \end{bmatrix}$ Find the eigenvalues for this system of equations.		
Q 7	Consider the scalar flux function illustrated below. Find the conservative numerical flux $f_{i+1/2}^n$ of Roe's first order upwind method. $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	10	CO4
Q 8	 Write down the expressions for the conservative numerical fluxes for the following numerical schemes for the solution of 1D scalar wave equation: a) FTBS b) FTCS 	10	CO3
Q 9	Derive the characteristic/wave form of the 1-dimensional, unsteady Euler equations that governs the propagation along the characteristic $\frac{dx}{dt} = u + a$.	10	CO1
	SECTION-C (2Qx20M=40 Marks)		
Q 10	(2QX20IVI=40 Marks)Consider a Riemann problem for the unsteady one-dimensional Euler equationswith $p_L = 10,000 \text{ N/m}^2, \rho_L = 1 \text{ kg/m}^3, u_L = 120 \text{ m/s}$ and $p_R = 1,000 \text{ N/m}^2, \rho_R = 0.125 \text{ kg/m}^3, u_R = 20 \text{ m/s}$. Find the pressure ratio across the shock wave usingRoe's approximate Riemann solver.OR	20	CO2

	Consider a Riemann problem for the unsteady one-dimensional Euler equations		
	with p_L = 10, 000 N/m ² , ρ_L =1 kg/m ³ , u_L =120 m/s and p_R =1,000 N/m ² , ρ_R =		
	0.125 kg/m ³ , $u_R = 20$ m/s. Find the pressure ratio across the shock wave using		
	an exact Riemann solver.		
Q 11	The split-coefficient matrix method "splits" the system of equations		
	$U_t + [A]E_x = 0$		
	into the following non-conservation form:		
	$U_t + [A^+]U_x + [A^-]U_x = 0$		
	where		
	$[A^+] = [T][\lambda^+][T]^{-1}$		
	$[A^{-}] = [T][\lambda^{-}][T]^{-1}$		
	If this method is applied to the system of equations	20	CO4
	$U = \begin{bmatrix} u \\ v \end{bmatrix} \qquad \qquad A = \begin{bmatrix} 0 & c \\ c & 0 \end{bmatrix}$		
	where c is a constant, find the following quantities:		
	a) $[\lambda^+], [\lambda^-]$		
	b) $[T], [T]^{-1}$		
	c) $[A^+], [A^-]$		