Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2022 - Jan 2023

	Course: Introduction to CFD Semester: I		
_	Program: M.Tech CFD Time 03 hrs. Course Code: ASEG 7001 Max. Marks: 100		
Course	SECTION A		
~	SECTIONA	T .	
S. No.		Marks	CO
Q1	List various steps involved in CFD analysis.	4	CO1
Q 2	Derive the discretized term for $\frac{\partial}{\partial x}$ second order upwind scheme.	4	CO2
Q 3	Discuss the importance of discretization in CFD.	4	CO2
Q 4	Discuss on various error sources in CFD.	4	CO3
Q 5	Compare finite volume approach with finite element approach for fluid simulations	4	CO4
	SECTION B		
Q 6	Apply first law of thermodynamic to a control volume and hence derive the energy equation in integral form. Use mathematical theorems to convert it in to differential equation form.	10	CO1
Q 7	Explain the mathematical behavior of governing equation for unsteady inviscid flow.	10	CO1
Q 8	Transform the following terms form physical plane (x,y) to computational plane (ε,η) : i. $\frac{\partial}{\partial x}$ ii. $\frac{\partial^2}{\partial x^2}$		
	OR	10	CO2
	Transform the following terms form physical plane (x,y) to computational plane (ε,η) : iii. $\frac{\partial}{\partial y}$ iv. $\frac{\partial^2}{\partial x \partial y}$		
Q 9	Formulate the set of mathematical equations using explicit approach for one-dimensional heat conduction equation and hence explain the concept of time marching.	10	CO3
	SECTION-C		
Q 10	Interpret the application of relaxation technique during a simulation with an example. Illustrate its mathematical behaviour and hence discuss the concept of over-relaxation and under-relaxation.	20	CO3
	OR		

	Formulate the mathematical equations of Alternating-Direction-Implicit (ADI) technique for solving fluid flow problems		
Q 11	i. Emphasis on the formulation of cell-vertex approach for solving fluid flow problems.ii. Explain upwind type discretization of governing equation in finite volume method.	20 (15+5)	CO4