Name: Enrolment No:		YUES	
$\begin{gathered} \text { SECTION A } \\ (5 \mathrm{Qx} 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain the configuration of SCARA and articulated robot?	4	CO1
Q 2	Describe the various types of automation? Which type of automation is suitable for hospital management?	4	CO2
Q 3	Solve the inverse position kinematics for the Cartesian manipulator of Fig 1. Consider the given tip position as ($\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}$). Fig. 1. Schematic diagram of Cartesian Manipulator.	4	CO2
Q 4	The following frame definitions are given as known: ${ }_{A}^{U} T=\left[\begin{array}{cccc} 0.866 & -0.500 & 0 & 11 \\ 0.500 & 0.866 & 0 & -1 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 1 \end{array}\right] ;$	4	CO1

	$\begin{aligned} { }_{A}^{B} T & =\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0.866 & -0.5 & 10 \\ 0 & 0.5 & 0.866 & -20 \\ 0 & 0 & 0 & 1 \end{array}\right] ; \\ { }_{U}^{C} T & =\left[\begin{array}{cccc} 0.866 & -0.500 & 0 & -3.0 \\ 0.433 & 0.750 & -0.5 & -3.0 \\ 0.250 & 0.433 & 0.866 & 3.0 \\ 0 & 0 & 0 & 1 \end{array}\right] \end{aligned}$ Draw a frame diagram to show their arrangement qualitatively, and solve for ${ }_{C}^{B} T$		
Q 5	A frame $\{B\}$ is located initially coincident with a frame $\{A\}$. Let us rotate $\{\mathrm{B}\}$ about Z_{B} by 30 degrees, and then rotate the resulting frame about X_{B} by 45 degrees. Give the rotation matrix that will change the description of vectors from ${ }^{B} P$ to ${ }^{A} P$?	4	CO1
	$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \mathrm{Marks}) \end{gathered}$		
Q 6	Derive the forward kinematic equation using the DH -convention for the three- link planar arm with prismatic joint shown in Fig. 2. Fig. 2. Schematic diagram of three-link planar manipulator with prismatic joint.	10	CO 2

Q 7	Solve the Inverse Kinematics for the general 3R robot in Fig.2. Fig. 3. Schematic diagram of 3R Manipulator.	10	CO 2
Q 8	Analysis the Jacobian Matrix of the Anthropomorphic Arm shown below. Fig. 4. Anthropomorphic Arm.	10	$\mathrm{CO3}$
Q 9	A single link robot with a rotary joint is motionless at $\theta=15$ degrees. It is desired to move the joint in a smooth manner to $\theta=75$ degrees in 3 seconds. Obtain the coefficients of a cubic that accomplishes this motion and brings the manipulator to rest at the goal? OR Develop the Jacobian Matrix expression in terms of only z and p if the configuration of the manipulator is RRRPRPR?	10	$\mathrm{CO4}$

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Consider the two-link Cartesian arm shown in Fig. 1, for which the vector of coordinates is $\mathbf{q}=[\mathrm{d} 1, \mathrm{~d} 2]^{\mathrm{T}}$. Let $\mathrm{ml} 1, \mathrm{ml} 2$ be the masses of the two links. Design the equation of motion with the absence of friction and tip contact forces. Fig. 5. Two link Cartesian Arm.	20	CO4

