Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Vehicle Dynamics and Control

Program: M.Tech Advanced Vehicles

Semester: 5th
Time : 03 h

Program: M.Tech Advanced Vehicles Time : 03 hrs.
Course Code: MEAV7003 Max. Marks: 100

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	CO	
Q 1	Explain critical damping and give some examples where it is used.	4	CO1	
Q 2	Explain understeer and oversteer condition.	4	CO1	
Q 3	Describe rolling resistance.	4	CO1	
Q 4	Describe the tread patterns for different road conditions.	4	CO1	
Q 5	Find the tire height and diameter for the following tire: 480/80R46 155A8	4	CO1	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Derive the expression for the effective radius of a tire. OR Derive the expression of space requirement for a cornering vehicle with front wheel steering.	10	CO2	
Q 7	Explain the roll center of a vehicle and derive the expression of roll stiffness.	10	CO1	
Q 8	Derive the expressions for force generation in pure lateral slip.	10	CO2	
Q 9	Explain the deceleration threshold based algorithm for ABS system.	10	CO2	
	SECTION-C (2Qx20M=40 Marks)			
Q 10	Honda CR-VT M is a midsize SUV car with the following specifications. $m = 1550 \text{ kg}$ $l = 2620 \text{ mm}$ Assume $a_1 = a_2, h = 720 \text{ mm}, \mu = 0.8$ The car is accelerating while travelling uphill (slope = 10°), determine the maximum acceleration of the car if (a) the car is rear-wheel drive	20	CO3	

(b) the car is front-wheel drive (c) the car is four-wheel drive. Also determine the time taken for the car to reach 0-100 km/h. OR Find the tire forces for a rear-wheel-drive car pulling a trailer with the following characteristics: $l=2272$ mm, $w=1457$ mm, $h=230$ mm, $a_1=a_2, h_1=310$ mm, $b_1=680$ mm, $b_2=610$ mm, $b_3=120$ mm, $b_2=560$ mm, $b_3=120$ m		
Q 11 Derive the equations of motion of a car taking a corner using bicycle model. Also, discuss the stability of the car with following specifications taking a corner at 10 m/s, Cornering stiffness of front tires = 500 N/deg Cornering stiffness of rear tires = 400 N/deg Mass of the car = 900 kg Mass moment of inertia of yaw = 1128 kgm² Distance of CG from front wheel = 91 cm Distance of CG from rear wheel = 164 cm State whether the car is in understeer or oversteer condition.	20	CO3