Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Course: Vehicle Dynamics and Control Semester: Program: M.Tech Advanced Vehicles Time Course Code: MEAV7003 Max. Mark Instructions: Attempt all questions. Assume appropriate data if required.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Explain critical damping and give some examples where it is used.	4	CO1
Q 2	Explain understeer and oversteer condition.	4	CO1
Q 3	Describe rolling resistance.	4	CO1
Q 4	Describe the tread patterns for different road conditions.	4	CO1
Q 5	Find the tire height and diameter for the following tire: 480/80R46 155A8	4	CO1
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Derive the expression for the effective radius of a tire. OR Derive the expression of space requirement for a cornering vehicle with front wheel steering.	10	CO2
Q 7	Explain the roll center of a vehicle and derive the expression of roll stiffness.	10	CO1
Q 8	Derive the expressions for force generation in pure lateral slip.	10	CO2
Q 9	Explain the deceleration threshold based algorithm for ABS system.	10	CO2
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Honda CR-VT M is a midsize SUV car with the following specifications. $\begin{aligned} & m=1550 \mathrm{~kg} \\ & l=2620 \mathrm{~mm} \end{aligned}$ Assume $a_{1}=a_{2}, h=720 \mathrm{~mm}, \mu=0.8$ The car is accelerating while travelling uphill (slope $=10^{\circ}$), determine the maximum acceleration of the car if (a) the car is rear-wheel drive	20	CO3

	(b) the car is front-wheel drive (c) the car is four-wheel drive. Also determine the time taken for the car to reach $0-100 \mathrm{~km} / \mathrm{h}$. OR Find the tire forces for a rear-wheel-drive car pulling a trailer with the following characteristics: $l=2272 \mathrm{~mm}, w=1457 \mathrm{~mm}, h=230 \mathrm{~mm}, a_{l}=a_{2}, h_{l}=310 \mathrm{~mm}, b_{l}=680 \mathrm{~mm}$, $b_{2}=610 \mathrm{~mm}, b_{3}=120 \mathrm{~mm}, h_{2}=560 \mathrm{~mm}, m=1500 \mathrm{~kg}, m_{t}=150 \mathrm{~kg}, \mu=1$, $\varphi=10 \mathrm{deg}, a=1 \mathrm{~m} / \mathrm{s}^{2}$.		
Q 11	Derive the equations of motion of a car taking a corner using bicycle model. Also, discuss the stability of the car with following specifications taking a corner at $10 \mathrm{~m} / \mathrm{s}$, Cornering stiffness of front tires $=500 \mathrm{~N} / \mathrm{deg}$ Cornering stiffness of rear tires $=400 \mathrm{~N} / \mathrm{deg}$ Mass of the car $=900 \mathrm{~kg}$ Mass moment of inertia of yaw $=1128 \mathrm{kgm}^{2}$ Distance of CG from front wheel $=91 \mathrm{~cm}$ Distance of CG from rear wheel $=164 \mathrm{~cm}$ State whether the car is in understeer or oversteer condition.	20	CO 3

