

Q 8	Explain the logic operation of master-slave JK flip-flop with neat circuit diagram. Also obtain the truth table for different combinations by analyzing the circuit.	10	$\mathrm{CO3}$
Q 9	Derive the output equation from the given circuit and implement the same by using NOR or NAND universal logic gates.	10	CO 3
	SECTION-C		
Q 10	(i) Draw the circuit symbol for p-n-p and n-p-n transistors and indicate the reference directions for the three currents and the reference polarities for the three voltages. (ii) With the help of neat diagram, explain the transistor as a switch. (iii) Determine I_{C} and V_{CE} for the following network.	$5+5+10$	CO1

$\left.$| Q 11 | Sketch the circuit of a phase-shift oscillator using (a) bipolar junction
 transistor (b) an op-amp. Derive an expression for frequency of oscillation at
 resonance.
 Design the phase-shift oscillator for operation at 5 kHz. | OR | $\mathbf{1 5 + 5}$ |
| :--- | :--- | :--- | :--- |$\quad \mathbf{C O 2} \right\rvert\,$| Sketch the circuit of a Wien bridge oscillator using (a) bipolar junction |
| :--- |
| transistor (b) an op-amp. Derive an expression for frequency of oscillation at |
| resonance. |
| Design the Wien bridge oscillator for operation at 1 kHz. |

