Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Mathematical Physics Program: M.Sc. (Physics) Course Code: PHYS 7014

Semester: I Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Q x 4M=20Marks)		
S. No.		Marks	СО
Q 1	Show that the divergence of a curl <i>A</i> is always equal to zero, where <i>A</i> is a vector.	4	C01
Q 2	State Cauchy residue theorem.	4	CO1
Q 3	Prove that $\Gamma(n+1) = n\Gamma n$	4	CO2
Q 4	Define contravariant and covariant tensors.	4	CO4
Q 5	If $f = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ and $= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, then show that the multiplication of permutation is not commutative.	4	CO4
	SECTION B (4Q x 10M= 40 Marks)		1
Q 6	Team A has probability 2/3 of winning whenever it plays. If A plays four games, find the probability that A wins (i) exactly two games (ii) at least one game.	10	CO2
Q 7	Use Runga-kutta method to find y(0.2) for the equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$, take $h = 0.2$. OR Using finite difference method, find $y(0.25)$, $y(0.5)$ and $y(0.75)$ satisfying the differential equation $y'' = x - y$, subject to boundary condition $y(0)=0$ and $y(1)=2$.	10	CO3
Q 8	Evaluate $\int_{4}^{5.2} \log_e x dx$ by Simpson's $3/8^{\text{th}}$ rule.	10	CO3
Q 9	Find the Laplace transformation of <i>sin at</i> .	10	CO4

	SECTION-C (2Q x 20M=40 Marks)				
Q 10	Diagonalize the Matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$, and find A^4 .				
	OR				
	(a) Evaluate the integral $\int_c \frac{z^2+2}{(z-1)(z-2)} dz$, where c is $ z = 2$.	20	CO1		
	(b) Find the first four terms of the <i>Taylor</i> series expansion on the complex variable function $f(z) = \frac{(z+1)}{(z-3)(z-4)}$ about $z = 2$.				
Q11	(a) Prove that the orthogonality relation of <i>Hermite</i> polynomial in				
	the form $\int_{-\infty}^{+\infty} e^{-x^2} H_m(x) H_n(x) dx = 2^n n! \pi^{\frac{1}{2}} \delta_{mn}$				
	(b) Hence show that $\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) dx = 2^n n! \pi^{\frac{1}{2}}$	20	CO4		