Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Course: M Sc Physics Semester: I Program: Electrodynamics Time: 03 hrs. Course Code: PHYS7005 Max. Marks: 100 **Instructions:** Read all the below mentioned instructions carefully and follow them strictly: • Mention Roll No. at the top of the question paper. • Attempt all the parts of a question at one place only ## SECTION A (5Qx4M=20Marks) | S. No. | | Marks | CO | | | |--------|---|-------|-----|--|--| | Q 1 | Find the gradient of the scalar fields: $U = \rho^2 Z \cos 2 \phi$ | 4 | CO2 | | | | Q 2 | Drive the expression for Time dilation | 4 | CO2 | | | | Q 3 | Write the Maxwell's equations for static fields | 4 | CO1 | | | | Q 4 | Explain the Ampere circuital theorem | 4 | CO1 | | | | Q 5 | Explain the Behavior of fluid in electromagnetic fields | 4 | CO1 | | | | | SECTION B | | | | | | | (4Qx10M = 40 Marks) | | | | | | Q 6 | Derive reflection and transmission in oblique incidence for linear dielectric media | 10 | CO3 | | | | Q 7 | Obtain the Helmholtz Wave equation and its solutions for Dielectric medium in terms of a. Refractive index of the material b. Velocity of the particle | 10 | CO2 | | | | Q 8 | State the Poynting theorem and derive the expression for Poynting vector and explain its significance | 10 | CO3 | | | | Q 9 | Explain the Physical basis of radiation reaction in detail | 10 | CO1 | | | | | SECTION C | | 1 | | | | | (2Qx20M=40 Marks) | | | | | | Q 10 | a. Derive the expression for relativistic addition of velocity and discuss the significance. | 12 | CO4 | | | | | - C | 8 | | | | | | b. At what speed must an observer move past the earth so that earth appears like an ellipse whose major axis is six times the minor axis? | | CO3 | |------|---|---------|-----| | Q 11 | a. State Einstein's postulates and the expressions for Lorentz transformations b. Calculate relativistic momentum in units of MeV/c of electron having kinetic energy of 500 keV. Or a. Define Retarded potentials and obtain the expression for Jefimenkos equations b. Discuss the concept of plasma and obtain an expression for plasma frequency. | 12
8 | CO4 |