Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Course: Quantum Mechanics I Semester: I Program: M.Sc. Physics \quad Time 03 hrs. Course Code: PHYS 7003 Max. Marks: 100 Instructions: Read all the below mentioned instructions carefully and follow them strictly: 1) Mention Roll No. at the top of the question paper. 2) Attempt all the parts of a question at one place only. 3) Section A has no choice while Sections B \& C have internal choices. 4) Scientific calculator is allowed.			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \text { Marks }) \end{gathered}$			
S. No.	(Attempt ALL questions)	Marks	CO
Q 1	Mention the properties of Hermitian Operators.	4	CO3
Q 2	Define Ehrenfest's theorem.	4	CO2
Q 3	The work function of a metal is 3.45 eV . What is the maximum wavelength of a photon that can eject an electron from the metal?	4	$\mathrm{CO2}$
Q 4	What is Compton effect? Give a schematic sketch of an experimental arrangement for observing this effect.	4	CO1
Q 5	The energy of an excited hydrogen atom is -3.4 eV . Calculate the angular momentum of the electron according to Bohr theory.	4	CO1
$\begin{gathered} \text { SECTION B } \\ (4 Q \times 10 M=40 \text { Marks }) \end{gathered}$			
Q 6	Using the concept of motion of wave packets prove that $\frac{d}{d t}\langle r\rangle=\frac{\langle p\rangle}{m}$.	10	$\mathrm{CO3}$
Q 7	A nucleon (neutron or proton) is confined to a nucleus of radius $5 \times 10^{-}$ ${ }^{15} \mathrm{~m}$. Calculate the minimum possible values of the momentum and the kinetic energy of the nucleon.	10	$\mathrm{CO2}$
Q 8	Calculate the most probable distance of the electron in the ground state of a hydrogenic atom. What is the radial probability density at that distance?	10	CO2

Q 9	Explain the alpha decay of a nucleus on the basis of the tunnel effect and obtain an expression for the lifetime of an alpha particle inside the nucleus. OR Derive the expression of Schrodinger time independent equation.	10	$\mathrm{CO2}$
$\begin{gathered} \text { SECTION C } \\ (2 Q \times 20 M=40 \text { Marks }) \end{gathered}$			
Q 10	(a) Consider a particle moving in a one-dimensional infinite square well. Solve the time-independent Schrödinger equation for this system and obtain the energy eigenvalues and the normalized eigen functions. (b) Prove that the momentum operator $-i \hbar \nabla$ is Hermitian.	15 5	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CO} \end{aligned}$
Q 11	Discuss the quantum mechanical scattering of a particle of mass m and energy E by the square potential well. $V(x)=\left\{\begin{array}{cc} 0 & x<0 \\ -V_{0} & 0<x<a \\ 0 & x>a \end{array}\right\}$ Obtain the reflection and transmission coefficients and show that their sum is unity. OR Obtain the time-independent Schrödinger equation in spherical polar coordinates for a particle in a spherically symmetric potential. Carry out the separation of variables and solve the angular equation.	20	$\mathrm{CO3}$

