Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Advanced Physical Chemistry Program: M.Sc. Chemistry Course Code: CHEM7016 Semester: I Time : 03 hrs. Max. Marks: 100

Instructions:

- 1. Write your enrolment number on the top left of the question paper
- 2. Do not write anything else on the question paper except your enrolment number
- 3. Attempt all part of a question at one place only
- 4. Internal choice is given for question number 1 of Section C only

SECTION A (50x4M=20Marks)

	(3Qx41v1-201v1a1KS)		
S. No.		Marks	СО
Q 1	A particle in three dimensional cubic box with length "a" has energy of $14h^2$ /8ma ² . What is the degeneracy of the state?	4	C01
Q 2	Give the expression of wavefunction and energy of a particle in a cubic 3D box with length "a". Explain the origin of degeneracy in the cubic box.	4	CO1
Q 3	Find the value of commutator $[p_x, T_x]$, where p_x is the momentum and T_x is the kinetic energy in the x direction.	4	CO2
Q 4	The transmittance of a dye solution at 500 nm is 20% when a quartz cuvette with path length of 1 cm is used. What is the absorbance of the dye solution?	4	CO4
Q 5	The zero-point energy of 1D linear harmonic oscillator is 500 cm ⁻¹ . What is the energy of the 3 rd vibrational state?	4	CO4
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 1	 (a) Calculate the rotational energy of the J=3 state when rotational constant B = 300 cm⁻¹. What is the degeneracy of rotational state with J=3? (b) Calculate the fundamental vibration frequency and the 1st excited state vibrational energy of ¹H³⁵Cl molecule. Given: force constant (k)= 200 Nm⁻¹, Plank constant = 6.626×10⁻³⁴ Js). 	5+5	CO3
Q 2	(a) What are the gross and specific selection rule of pure rotational, vibrational spectroscopy.(b) Explain the variational principal of quantum chemistry.	5+5	CO3

Q 3	Find the eigen value of function $f = e^{-4ix}$ operated by an operator $\hat{A} = (\frac{d^2}{dx^2})$.	10	CO3
Q 4	 (a) Write the first order and second order perturbation energy corrections terms? Explain all the terms involved. (b) What are the causes of spectral line broadening? 	5+5	CO3
	SECTION-C (2Qx20M=40 Marks)		1
Q 1	 (i) (a) Using a suitable diagram show the origin fundamental, 1st overtone, 2nd overtone and hot bands in vibrational spectroscopy. (b) Write down the selection rules for P, Q and R branches in rovibrational spectroscopy. (ii) (a) Write relation between rotational constant (B) and bond length (r). Explain all the terms involved. (b) The fundamental vibration frequency of ¹H³⁵Cl molecule is 5 X 10¹³ Hz. Calculate the force constant for this molecule. (Given: Plank constant = 6.626×10-34 Js). (i) Derive all the Maxwell's relation using Euler's theorem. (ii) Derive the expression of wave function and energy of a particle in three-dimensional box. 	10+10	CO4
Q 2	 (i) Given that a particle is restricted to the region -a<x<a (πx="" 2a),="" a="" and="" cos="" function="" function.<="" has="" li="" normalize="" proportional="" the="" to="" wave="" ψ=""> (ii) Explain canonical, micro-canonical and grand-canonical ensembles with diagrams. </x<a>	10+10	CO2