Name: 2

S. No.

Enrolment No:

Marks

CO

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Program Name: B.Sc. (H) Geology, Chemistry & Mathematics

Course Name: Electricity and Magnetism Semester: I

Course Code: PHYS 1016G Max. Marks: 100 Time: 03 hrs. Nos. of pages: 2

Instructions: Answers should be brief and concise.

SECTION A (20 marks) All question of section A are compulsory

D. 1 (O.		Mains	CO
Q 1	What do you mean by electric dipole and electric dipole moment?	4	CO1
Q2	Potential of a certain charge configuration is expressed by $V=5x+5xy+y$ volts. Find the Electric field intensity at point (5,3).	4	CO2
Q3	If $\vec{A} = 2\hat{\imath} + 3\hat{\jmath} + \hat{k}$, $\vec{B} = and \hat{\imath} + 3\hat{\jmath} + 2\hat{k}$ Find the angle between two vectors.	4	CO2
Q4	The self-inductance of a coil having 200 turns is 40 mH, calculate the magnetic flux through the cross-section of the coil corresponding to a current of 4 mA. Calculate the total flux linked with the coil.	4	CO3
Q5	Define and write the mathematical form of Biot Savart's Law.	4	CO1
	SECTION B (40 marks)		
	Question 9 consists of an internal choice		
Q 6	What do you mean by a gradient of scalar field? Derive the relation that represents its physical significance.	10	CO1
Q 7	Prove that the Gradient of electrical potential due to point charge "q" represents the electric field at any point.	10	CO4
Q 8	What is electromagnetic induction? Give a brief account of the experiment to demonstrate it. State the concept of self and mutual inductance.	10	CO2
Q 9	Derive the relation for magnetic field on the axis of current carrying circular coil by using Biot – Savart Law. OR By using Ampere's Law, derive the relation for the magnetic field due to an infinitely long solenoid.	10 10	CO2

	SECTION-C (40 marks)				
(Q10 is compulsory. Attempt any set of Q11 & 12)					
(Q10 is compaisory. Attempt any set of Q11 & 12)					
Q 10	a) Derive and discuss the equation of continuity $\vec{\nabla} \cdot J = \frac{\partial \rho}{\partial t}$. Derive its form for a	10	CO4		
	steady current.				
	b) Explain the importance of each maxwell equation and write its differential and				
	integral form for free space.	10	CO4		
	a) Derive the Electric field due to non -conducting charged sheet of surface charge				
Q 11	density "o".				
		10	CO3		
	b) By using Gauss's law, derive electric field intensity due to the spherical shell at a				
	point inside, outside, or on the surface of a spherical shell.	10	CO3		
	OR				
	c) Derive electric potential due to an electric dipole at its equatorial and axial point.				
Q 12		10	002		
	d) Derive the expression for the electric potential at a point inside, outside or on the	10	CO3		
	surface of solid sphere.	10	CO2		
		10	CO3		