Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022			
SECTION A			
S. No.		Marks	CO
Q 1	Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$.	4	CO1
Q 2	If $u=x^{2} y z-4 y^{2} z^{2}+2 x z^{3}$ then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=4 u$.	4	CO2
Q 3	Evaluate the integral $\int_{0}^{1} \int_{x}^{x^{2}} x y d y d x$.	4	CO2
Q 4	Determine the constant b such that $\bar{A}=\left(b x+4 y^{2} z\right) \hat{\imath}+\left(x^{3} \sin z-3 y\right) \hat{\jmath}-\left(e^{x}+4 \cos x^{2} y\right) \hat{k}$ is solenoidal.	4	CO3
Q 5	If $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$, find $(\operatorname{grad} \phi)$ at the point $(1,-2,1)$.	4	CO
SECTION B			
Q 6	Examine the function $f(x, y)=3 x^{2}-y^{2}+x^{3}$ for extreme values.	10	CO2
Q 7	If $u=x y z, v=x^{2}+y^{2}+z^{2}, w=x+y+z$, then prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=2(y-z)(x-z)(x-y) .$	10	CO2
Q 8	Evaluate $\iint e^{x+y} d x d y$ over the triangle bounded by $x=0, y=0, x+y=1$. OR Change the order of integration and hence evaluate $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x$.	10	CO2

Q 9	The velocity vector field of an ideal fluid is given by $\bar{F}(x, y, z)=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-2 x z+2 z) \hat{k}$. Show that \bar{F} is irrotational and incompressible.	10	$\mathrm{CO3}$
SECTION-C			
Q 10	Define eigenvalues and eigenvectors of a matrix. Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$.	20	CO1
Q 11	Define curl of a vector point function. Prove that the curl of the linear velocity of any particle of a rigid body is equal to twice the angular velocity of the body. Also show that the vector field $\bar{F}=\frac{a(x \hat{\imath}+y \hat{\jmath})}{\sqrt{\left(x^{2}+y^{2}\right)}}$ is a source field or sink field according as $a>0$ or $a<0$. OR State Green's theorem. Verify Green's theorem for $\oint_{C}\left[\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y\right]$ where C is the boundary of the region bounded by the parabola $y=x^{2}$ and the line $y=x$.	20	CO

