Name: Enrolment No:			
Course: Engineering Mathematics-I Semester: I Program: B. Tech SOE Course Code: MATH 1049 Time: 03 hrs. Instructions: Attempt all questions Max. Marks: 100			
$\begin{gathered} \text { SECTION A } \\ (5 \mathrm{Q} \times 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Examine the consistency of the system and if it is consistent, solve the equations: $2 x-y+z=9 ; 3 x-y+z=6 ; 4 x-y+2 z=7 ;-x+y-z=4$	4	CO1
Q 2	Evaluate $\int_{0}^{3} \int_{0}^{1}\left(x^{2}+3 y^{2}\right) d x d y$	4	CO2
Q 3	If $f(c x-a z, c y-b z)=0$ then show that $a \frac{\partial z}{\partial x}+b \frac{\partial z}{\partial y}=0$.	4	CO2
Q 4	Find the divergence and curl of the vector $\vec{F}(x, y, z)=x z^{3} \hat{\imath}-$ $2 x^{2} y z \hat{\jmath}+2 y z^{4} \hat{k}$.	4	CO 3
Q 5	A vector field is given by $\vec{F}=(\sin y) \hat{\imath}+x(1+\cos y) \hat{\jmath}$. Evaluate the line integral over the circular path given by $x^{2}+y^{2}=a^{2}, z=0$.	4	CO 3
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Show that the matrix $\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$ is similar to its diagonal matrix. Also, find its modal matrix.	10	CO1

Q 7	Change the order of the integration in $I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate the same.	10	$\mathrm{CO2}$
Q 8	If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=y z+z x+x y$, prove that $\operatorname{grad} u, \operatorname{grad} v$ and $\operatorname{grad} w$ are coplanar vectors.	10	$\mathrm{CO3}$
Q 9	Expand $f(x, y)=e^{x} \cos y$ in the powers of x and y by using Maclaurin's series. OR Expand $f(x)=x$ in a half-range sine series in the interval $(0,2)$.	10	$\mathrm{CO4}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$			
Q 10	Find the Fourier series of $f(x)=x+x^{2}$ in the interval $(-\pi, \pi)$ and hence deduce that $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots \ldots \ldots$	20	$\mathrm{CO4}$
Q11 A	Evaluate $\iint \vec{F} \cdot d \vec{S}$ using Gauss's divergence theorem, where $\vec{F}=$ $2 x y \hat{\imath}+y z^{2} \hat{\jmath}+z x \hat{k}$ and S is the surface of the region bounded by $x=$ $0, y=0, z=0, y=3, x+2 z=6$. OR If $\vec{A}=2 x z \hat{\imath}-x \hat{\jmath}+y^{2} \hat{k}$, evaluate $\iiint_{V} \vec{A} d v$, where V is the region bounded by the surface $x=0, y=0, x=2, y=6, z=x^{2}, z=4$.	10	$\mathrm{CO3}$
Q11 B	Prove that $\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-2 x z+$ $2 z) \hat{k}$ is both solenoidal and irrotational. OR If $u=x^{2}+y^{2}+z^{2}$ and $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, then find $\operatorname{div}(u \vec{r})$ in terms of u.	10	

