Name:

Enrolment No:

Time

: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Physics Semester: I

Program: B. Tech APE-UP, ADE, Chemical, ME, Mech, ECE, CE, E&Com, SE, ASE

Course Code: PHYS 1002 Max. Marks: 100

Instructions: Use of scientific calculator is permitted.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Differentiate between soft and hard magnetic materials.	4	CO2	
Q 2	Draw the atomic planes described by the miller indices (123) and (112).	4	CO4	
Q 3	A signal of power $5\mu W$ exists just inside the entrance of 0.1 km long fibre. Calculate the attenuation coefficient of the fibre if the power inside the fibre be 1 μW .	4	CO1	
Q 4	State the characteristics of Laser. Also list their applications.	4	CO1	
Q 5	If the magnitude of \vec{H} in a plane wave is A/m, find the magnitude of \vec{E} for plane wave in free space.	4	CO2	
	SECTION B (4Qx10M= 40 Marks)			
Q 6	Show that plane and circularly polarized lights are the special cases of an elliptically polarized light.	10	CO1	
Q 7	An electron is trapped in a 1D infinitely deep potential well of width $L = 10^{-9}$ m. Calculate the wavelength of photon emitted from the transition $E_4 \rightarrow E_3$.	10	CO3	
Q 8	Derive the expression for Clausius Mossotti equation.	10	CO 2	
Q 9	Derive the mathematical expression for Ampere's circuital law incorporating Maxwells correction. OR If the earth receives 2 cal min ⁻¹ cm ⁻² solar energy, what would be the amplitudes of electric and magnetic fields of radiation	10	CO2	
	SECTION-C			

Q 10	a. What is pair production? Explain why it cannot take place in an empty space. (10) b. Develop the time dependent Schrodinger wave equation for a quantum particle starting with simple wave equation. (10) OR a. What is the photoelectric effect? Explain it with the help of different graphs. (10) b. A photon of energy E is scattered by an electron initially at rest (rest mass energy, E_0) (Compton scattering problem). Show that the maximum kinetic energy (KE_{max}) of the recoil electron can be calculated as $E_{max} = \frac{2E^2}{1+2E}/E_0$ (10)	20	CO3
Q 11	a. Define Bravais lattice and describe their different types. (10) b. Define maximum power point, fill factor & efficiency of a solar cell. Calculate input power to obtain 0.1 watt output power from 10% efficient poly-Si solar cell. (10)	20	CO4

LIST OF IMPORTANT CONSTANTS

Planck's constant, $h=6.6\times 10^{-34}$ J.s Boltzmann's constant, $k=1.38\times 10^{-23}$ J/K Mass of electron, $me=9.1\times 10^{-31}$ Kg Mass of proton, $mp=1.67\times 10^{-27}$ Kg Velocity of light, $c=3\times 10^8$ m/s Rydberg Constant, $R=1.097\times 10^7$ m-1 Avogadro's number = 6.023×10^{23} Permeability of free space, μ 0= $4\pi\times 10^{-7}$ Henry/m Permittivity of free space, ϵ 0= 8.85×10^{-12} F/m