

	A steel rod of length 2 meters and of diameter 0.52 mm is suspended from a rigid support and loaded with 5 kg . An elongation of 2.3 mm is observed. Calculate the coefficient of longitudinal elasticity of steel.		
SECTION-C (Attempt all the questions. Question 11 has internal choice) (2QX20M=40 Marks)			
Q 10	(a) Deduce an expression for the gravitational potential and field due to a spherical shell at a point inside the shell. (b) A solid sphere of mass 4 kg and diameter 0.10 meter is suspended on a wire. Find the period of angular oscillations for small displacement if the torque required to twist the wire is $4 \times 10^{-3} \mathrm{~N}-\mathrm{m} / \mathrm{rad}$.	10 10	CO2
Q 11	(a) A body moving with velocity v has a mass m . Show that $m=\frac{m_{0}}{\sqrt{\left(1-\frac{v^{2}}{c^{2}}\right)}}$ Where m_{0} is the rest mass of the body and c , the speed of light. (b) Calculate the speed of electrons which has kinetic energy 2 MeV . Rest mass of an electron $=9.1 \times 10^{-31} \mathrm{~kg}$ Or (a) Explain Lorentz Fitzgerald contraction and time dilation. Find out the necessary expressions. (b) With what velocity should a rod move (parallel to the length) so that its length appears half of its original length?	15	CO 3

