Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

- Programme Name: B.Sc. (H) Physics
- : Mechanics **Course Name** : PHYS1012
- **Course Code**

Nos. of page(s) : 2 Semester : I : 03 hrs Time Max. Marks : 100

Instructions: Read the instructions carefully and follow them strictly.

- i) Mention roll no. at the top of the question paper.
- ii) Attempt all the parts of a question at one place only.

SECTION A (Attempt all the questions) (5QX4M=20 Marks)

S. No.		Marks	CO
Q 1	Write the Lorentz transformation equations.	4	C01
Q 2	Interpret Poisson's ratio. What are its theoretical limits?	4	CO2
Q 3	If the centre of mass of three particles of masses 1, 2 and 3 gram be at a point $(1,1,2)$, then where should a the forth particle of mass 5 gram be placed so that the combined centre of mass may be at the point $(0,0,0)$.	4	CO2
Q 4	Prove that the curl of a conservative force is zero.	4	CO3
Q 5	Discuss moment of inertia. On what factors does it depend?	4	CO3
<u> </u>	SECTION B (Attempt all the questions. Question 9 has internal choice) (4QX10M=40 Marks) Express the relation between the kinetic, potential, total energy, and angular		
Q 6	momentum \mathbf{J} of a satellite of mass \mathbf{m} moving in a circular orbit of radius \mathbf{r} .	10	CO1
Q 7	Calculate the moment of inertia of a hollow cylinder about its own axis.	10	C01
Q 8	With suitable diagram, state Kepler's law of planetary motion. Show that the time period of revolution of the planet in an elliptical orbit is; $T = \sqrt{\frac{4\pi^2 m^2 l a^3}{J^2}}$ Where <i>a</i> is the semi-major axis and <i>l</i> is the semi-latus rectum of ellipse.	10	CO3
Q 9	A fly wheel, whose mass is 500 kg and diameter 2 meters, makes 500 revolutions in one minute. Assuming that the whole mass is concentrated on its rim, determine the angular velocity, energy, and moment of inertia of the flywheel. Or	10	CO4

	A steel rod of length 2 meters and of diameter 0.52 mm is suspended from a rigid support and loaded with 5 kg. An elongation of 2.3 mm is observed. Calculate the coefficient of longitudinal elasticity of steel.		
	SECTION-C (Attempt all the questions. Question 11 has internal choice) (2QX20M=40 Marks)		
Q 10	(a) Deduce an expression for the gravitational potential and field due to a spherical shell at a point inside the shell.	10	CO2
	(b) A solid sphere of mass 4 kg and diameter 0.10 meter is suspended on a wire. Find the period of angular oscillations for small displacement if the torque required to twist the wire is $4 \times 10^{-3} N - m/rad$.	10	
	(a) A body moving with velocity v has a mass m. Show that $m = \frac{m_0}{\sqrt{(1 - \frac{v^2}{c^2})}}$ Where m_0 is the rest mass of the body and c, the speed of light.	15	
Q 11	(b) Calculate the speed of electrons which has kinetic energy 2 MeV. Rest mass of an electron = $9.1 \times 10^{-31} kg$ Or	5	CO3
	(a) Explain Lorentz Fitzgerald contraction and time dilation. Find out the necessary expressions.	15	
	(b) With what velocity should a rod move (parallel to the length) so that its length appears half of its original length?	5	