Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Physical Chemistry

Semester: I

Program: B.Sc (H) Chemistry Time : 03 hrs.
Course Code: CHEM 1004 Max. Marks: 100

Instructions:

- 1. Write your enrolment number on the top left of the question paper
- 2. Do not write any thing else on the question paper except your enrolment number
- 3. Attempt all part of a question at one place only
- 4. Internal choice is given for question number 4 of Section B and question number 2 of Section C only

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Discuss capillary tube method for determination of surface tension	4	CO1
Q 2	Calculate the pH of 0.10 M solution of NH ₄ Cl. The dissociation constant (K _b) of NH ₃ is 1.6 X 10 ⁻⁵	4	CO3
Q 3	(i) Why falling liquid drops are spherical?(ii) A liquid is transferred from a smaller vessel to a bigger vessel at the same temperature. What will be the effect on the vapour pressure?	4	CO1
Q 4	Calculate the Miller indices of crystal planes which cut through the crystal axes at (i) (a, b, c) (ii) (-2a, -3b, -3c)	4	CO1
Q 5	What would be the pH of a solution obtained by mixing 100 mL of 0.1 N HCl and 9.9 mL of 1.0 N NaOH solution?	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
	(Question No. 1, 2 and 3 are Compulsory); attempt any one from qu	uestion no 4	
Q 1	State and explain the principle of corresponding states. Derive an expression Inter connecting critical pressure, critical volume and critical temperature.	10	CO2

Q 2	 (i) Derive an expression of hydrolysis constant for salt of strong acid and weak base. Consider degree of hydrolysis to be "h". (ii) The solubility of AgCl in water at 25°C is found to be 1.06 X 10⁻⁵ moles per litre. Calculate the solubility product of AgCl at this temperature 	6+4	СО3
Q3	 (i) Calculate the total and average kinetic energy of 32 g methane molecules at 27°C (ii) Calculate the pH on addition of 1 mL of 1 M NaOH of a buffer which is 0.1 M in acetic acid and 0.15 m in sodium acetate. K_a of acetic acid is 1.75 X 10⁻⁵ 	5+5	CO3
Q 4	(i) An element exists in the body-centered cubic structure whose cell edge is 2.88 A°. The density of the element is 7.20 g/cc. Calculate the number of atoms in 104 g of the element (ii) Calculate the packing efficiency in the Body centered cubic unit cell. OR (i) The first-order reflection of a beam of X-rays of wavelength 1.54 A° from the (1 0 0) plane of a crystal of the simple cubic type occurs at an angle of 11.29°. Calculate the length of the unit cell. (ii) Discuss the structure of CsCl	6+4	CO1
	SECTION-C (2Qx20M=40 Marks) (Question No. 1 Compulsory); attempt any one from question	n no 2	
Q 1	(i) Explain the pH titration curve for weak acid and strong base (ii) Derive the equation for solubility product in terms of solubility of the corresponding ions for the following: (a) Pb(NO ₃) ₂ (b) Ca ₃ (PO ₄) ₂ (c) Ag ₂ S (d) Ag ₂ SO ₄	4+8+8	CO3

	(iii) Calculate H ⁺ concentration in the following solutions (a) a mixture of 5 mL of N/10 CH3COOH and 5 mL of N/10 NaOH (b) a mixture of 5 mL of N/10 ammonia and 5 mL of N/10 HCl		
Q 2	(i) Equal volume of 2 X 10 ⁻³ M BaCl ₂ solution and 2 X 10 ⁻⁴ M Na ₂ SO ₄ are mixed. Will precipitation occur? (K _{sp} of BaSO ₄ = 1 x 10 ⁻¹⁰) (ii) Explain: (a) Solubility Product (b) common Ion Effect OR (i) Lead chloride has a solubility product of 1.7 X 10 ⁻⁵ at 298K. calculate its solubility at this temperature (ii) Establish relation between pK _a , pK _b and pK _w	10+10	CO3