| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| \left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES   <br> End Semester Examination, December 2022  $\right]$ Semester: I $: 0$ Time $: 03$ hrs. |  |  |  |
| SECTION A <br> (5Qx4M=20Marks) <br> (5ttempt All Questions. Each Question will carry 4 Marks |  |  |  |
| S. No. |  | Marks | CO |
| Q1 | Write a short note on random variables using the coin-tossing example. | 4 | CO1 |
| Q2 | Write down three important properties of Dirac delta function. | 4 | CO1 |
| Q3 | If the $x y$ plane of the Cartesian coordinate system with coordinates ( $x, y, z$ ) is rotated by an angle $\theta$ w.r.t. the $z$ axis resulting in a coordinate system with $\left(x^{\prime}, y^{\prime}, z\right)$ coordinates, derive the transformation equations relating $\left(x^{\prime}, y^{\prime}, z\right) \rightarrow(x, y, z, \theta)$. | 4 | CO1 |
| Q4 | Solve the following differential equation if it is exact: $x d x+y d y=\frac{a^{2}(x d y-y d x)}{x^{2}+y^{2}}$ | 4 | CO3 |
| Q5 | Solve the following ${ }^{\text {st }}$ order linear differential equation: $\frac{d y}{d x}=\frac{y}{2 y \log y+y-x}$ | 4 | CO2 |
| $\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$ <br> Each question will carry 10 marks ( $10 \times 4=40$ Marks) There is an internal choice for Q9. |  |  |  |
| Q6 | Find the complete solution of the following $2^{\text {nd }}$ order linear differential equation: $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4=8 x^{2} e^{2 x} \sin 2 x$ | 10 | CO2 |
| Q7 | Find the particular solution of the following differential equation using Wronskian method. $\left(D^{2}-7 D+10\right) y=e^{2 x} \sin x$ | 10 | $\mathrm{CO2}$ |
| Q8 | Find out whether the differential equation given below | 10 | CO3 |


|  | $\left(y-2 x^{3}\right) d x-x(1-x y) d y=0$ <br> Is exact or not? If it is exact, find out the solution. If it is not exact, make it exact and then find out the solution. |  |  |
| :---: | :---: | :---: | :---: |
| Q9 | (a) Find the eigen values of the following matrix: ( $\mathbf{5}$ marks) $A=\left[\begin{array}{ccc} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{array}\right]$ <br> (b) Define a Hermitian matrix. Prove that the following matrix is Hermitian: ( 5 marks) $A=\left[\begin{array}{ccc} 1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0 \end{array}\right]$ <br> OR <br> Find the matrix which diagonalizes the following matrix $A=\left[\begin{array}{ccc} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{array}\right]$ <br> Also, write the diagonal matrix. | 10 | CO1 |
|  | $\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$ <br> Each Question carries 20 Marks. <br> Attempt two questions. There is an internal choice for Q11. |  |  |
| Q10 | (a) Find the directional derivative of $\vec{\nabla} \cdot \vec{u}$ where $\vec{u}=x^{4} \hat{\imath}+y^{4} \hat{\jmath}+z^{4} \hat{k}$, at the point $(1,2,2)$ in the direction of the outward normal to the sphere $x^{2}+$ $y^{2}+z^{2}=9$. ( 10 marks) <br> (b) A vector field is given by $\vec{A}=y^{2} \hat{\imath}+2 x y \hat{\jmath}-z^{2} \hat{k}$ <br> Is this field irrotational? If so, find its scalar potential. ( 10 marks) | 20 marks | CO4 |
| Q11 | (a) State and Discuss Gauss's Divergence theorem. (5 marks) <br> (b) Evaluate the following surface integral: $\iint_{S} \vec{A} \cdot \hat{n} d s$ <br> where $\vec{A}=z \hat{\imath}+x \hat{\jmath}-3 y^{2} \hat{k}$ and $S$ is the surface of the cylinder $x^{2}+y^{2}=$ 16 in the first octant between $z=0$ and $z=5$. ( 15 marks) <br> OR <br> (a) State and discuss Stokes' theorem. (5 marks) <br> (b) Evaluate the following surface integral $\iint_{S}\left(y x \hat{\imath}+z \hat{\jmath}+x y^{2} \hat{k}\right) \cdot \overrightarrow{d s}$ <br> where $S$ is the surface of the sphere $x^{2}+y^{2}+z^{2}=b^{2}$ in the first octant. ( 15 marks) | 20 marks | CO4 |

