Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Mathematical Physics I Program: BSc (H) Physics Course Code: PHYS 1011 Semester: I Time : 03 hrs. Max. Marks: 100

SECTION A (5Qx4M=20Marks)

Attempt All Questions. Each Question will carry 4 Marks

S. No.		Marks	СО
Q1	Write a short note on random variables using the coin-tossing example.	4	CO1
Q2	Write down three important properties of Dirac delta function.	4	CO1
Q3	If the xy plane of the Cartesian coordinate system with coordinates (x, y, z) is rotated by an angle θ w.r.t. the z axis resulting in a coordinate system with (x', y', z) coordinates, derive the transformation equations relating $(x', y', z) \rightarrow (x, y, z, \theta)$.	4	CO1
Q4	Solve the following differential equation if it is exact: $xdx + ydy = \frac{a^2(xdy - ydx)}{x^2 + y^2}$	4	CO3
Q5	Solve the following 1 st order linear differential equation: $\frac{dy}{dx} = \frac{y}{2y \log y + y - x}$	4	CO2
	SECTION B		
	(4Qx10M= 40 Marks)		
	Each question will carry 10 marks (10×4 = 40 Marks)		
	There is an internal choice for Q9.		
Q6	Find the complete solution of the following 2 nd order linear differential equation: $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4 = 8x^2e^{2x}\sin 2x$	10	CO2
Q7	Find the particular solution of the following differential equation using Wronskian method. $(D^2 - 7D + 10)y = e^{2x} \sin x$	10	CO2
Q8	Find out whether the differential equation given below	10	CO3

	$(y-2x^3)dx - x(1-xy)dy = 0$		
	Is exact or not? If it is exact, find out the solution. If it is not exact, make		
	it exact and then find out the solution.		
Q9	(a) Find the eigen values of the following matrix: (5 marks) $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ (b) Define a Hermitian matrix. Prove that the following matrix is Hermitian: (5 marks) $A = \begin{bmatrix} 1 & 1-i & 2 \\ 1+i & 3 & i \\ 2 & -i & 0 \end{bmatrix}$	10	CO1
	Find the matrix which diagonalizes the following matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$		
	Also, write the diagonal matrix. SECTION-C		
	(2Qx20M=40 Marks)		
1.	Each Question carries 20 Marks.		
2.	Attempt two questions. There is an internal choice for Q11.		
Q10	 (a) Find the directional derivative of V · u where u = x⁴î + y⁴ĵ + z⁴k, at the point (1,2,2) in the direction of the outward normal to the sphere x² + y² + z² = 9. (10 marks) (b) A vector field is given by A = y²î + 2xyĵ - z²k Is this field irrotational? If so, find its scalar potential. (10 marks) 	20 marks	CO4
Q11	 (a) State and Discuss Gauss's Divergence theorem. (5 marks) (b) Evaluate the following surface integral: 		CO4
	$\iint_{S} \vec{A} \cdot \hat{n} ds$ where $\vec{A} = z\hat{\imath} + x\hat{\jmath} - 3y^{2}\hat{k}$ and <i>S</i> is the surface of the cylinder $x^{2} + y^{2} =$ 16 in the first octant between $z = 0$ and $z = 5$. (15 marks) OR (a) State and discuss Stokes' theorem. (5 marks) (b) Evaluate the following surface integral $\iint_{S} (yx\hat{\imath} + z\hat{\jmath} + xy^{2}\hat{k}). d\vec{s}$ where <i>S</i> is the surface of the sphere $x^{2} + y^{2} + z^{2} = b^{2}$ in the first octant.	20 marks	