Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Course: Matrices Semester: I Program: B.Sc. (Hons.) (Physics/Geology/Chemistry) Time: 03 hrs. Course Code: MATH 1029 G Max. Marks : 100 Instructions: Attempt all the questions. Q9 and Q11 have internal choice.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q1	Express the matrix $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -2 & 5 & 3 \\ -1 & 6 & 3\end{array}\right]$ as the sum of a symmetric and a skew-symmetric matrices.	4	CO1
Q2	Define the Inverse of a square matrix and hence find the inverse of $A=\left[\begin{array}{ccc} 1 & 5 & -2 \\ 3 & -1 & 4 \\ -3 & 6 & -7 \end{array}\right]$	4	CO2
Q3	Define Linear dependency and independency of vectors. Find the condition on " a " for which the set $S=\{\{0,1, a),(a, 1,0),(1, a, 1)\}$ is linearly independent.	4	CO 3
Q4	For the transformation $\xi=x \cos \alpha-y \sin \alpha ; \eta=x \sin \alpha+y \cos \alpha$, prove that the coefficient matrix A is orthogonal. Hence write the inverse transformation.	4	CO4
Q5	Find the characteristic polynomial of $A=\left[\begin{array}{lllll}2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7\end{array}\right]$.	4	CO5
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q6	If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$, show that $A(\operatorname{adj} A)=(\operatorname{adj} A) A=\|A\| I$.	10	CO1
Q7	Solve the system $x+y+z=5 ; x+2 y+2 z=6 ; x+2 y+3 z=8$ using Crout's decomposition technique.	10	CO3
Q8	Solve the system $x+2 y+3 z=5 ; 2 x+8 y+22 z=6 ; \quad$ and $3 x+22 y+82 z$ using an appropriate LU decomposition technique.	10	CO 3

Q9	State the Cayley Hamilton Theorem. Verify the Caley Hamilton Theorem for $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and hence find A^{-1}. OR Define the minimal polynomial of a matrix. If $A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2\end{array}\right]$, find its minimal polynomial.	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	(a) Solve the system $\left[\begin{array}{ccc}2 & -7 & 4 \\ 1 & 9 & -6 \\ -3 & 8 & 5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}9 \\ 1 \\ 6\end{array}\right]$ using Gauss-Jordan technique. (b) Find the non-trivial solutions of the following system of equations using the concept of rank. $\begin{gathered} 2 x+y+2 z=0 \\ x+y+3 z=0 \\ 4 x+3 y+8 z=0 \end{gathered}$	20	CO 2
Q11	Diagonalize the matrix $A=\left[\begin{array}{lll}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$. OR Prove that the eigen vectors of $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$ are not orthogonal.	20	CO4

