Name: Enrolment No:			
Course Progra Course	\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 $\right]$ Semes	r: I 3 hrs. Marks: 1	
Instruc	$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$ ion: Section A has 5 questions. All questions are compulsory.		
S. No.		Marks	CO
Q 1	Suppose that $f(x)$ is a continuous in $[0,1]$ and $f(0)=0, f(1)=0$. Prove that $f(c)=1-2 c^{2}$ for some $c \in(0,1)$.	4	$\mathrm{CO1}$
Q 2	Expand the function $\sin x$ in powers of $\left(x-\frac{\pi}{2}\right)$.	4	C01
Q 3	Show that the length of the portion of the tangent to the curve $x=a \cos ^{3} \theta$, $y=a \sin ^{3} \theta$ intercepted between the co-ordinate axes is constant.	4	CO2
Q 4	Show that the curvature of the point $(3 a / 2,3 a / 2)$ on the Folium $x^{3}+y^{3}=3 a x y$ is $-8 \sqrt{2} / 3 a$.	4	CO 3
Q 5	Evaluate the following limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{x^{2}+y^{2}}$	4	CO4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \mathrm{Marks}) \end{gathered}$ Instruction: Section B has 4 questions. All questions are compulsory. Question 9 has internal choice to attempt any one.			
Q 6	Suppose that the angle of inclination from the top of a 100 ft pole to sun is decreasing at a rate of 0.05 radians per minute. How fast is the length of the pole's shadow on the ground increasing when the angle of inclination is $\pi / 6$ radians? You may assume that the pole is perpendicular to the ground.	10	CO5
Q 7	If $y=\cos \left(m \sin ^{-1} x\right)$, show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0 .$	10	CO1

Q 8	Find the condition for the curves $a x^{2}+b y^{2}=1, a_{1} x^{2}+b_{1} y^{2}=1$ to intersect orthogonally.	10	CO2
Q 9	If $r=a(1+\cos \theta)$, find the polar sub-tangent, polar sub-normal and the length of polar tangent and polar normal when $\theta=\tan ^{-1}(3 / 4)$. OR For the curve $y=a \log \sec (x / a)$, prove that $\frac{d^{2} x}{d s^{2}}=\frac{1}{2 a} \sin \frac{2 x}{a}$	10	CO2
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$			

Instruction: Section C has 2 questions. All questions are compulsory. Question 11 has internal choice to attempt any one.

Q 10	(a) Given $f(x, y)=\left\{\begin{array}{cl} \frac{(x-1) \sin y}{y \log _{e} x}, & (x, y) \neq(1,0) \\ 1, & (x, y)=(1,0) \end{array}\right.$ Check the continuity of the given function at point (1,0). (b) Find the value of n so that the equation $v=r^{n}\left(3 \cos ^{2} \theta-1\right)$ satisfies the relation $\frac{\partial}{\partial r}\left(r^{2} \frac{\partial v}{\partial r}\right)+\frac{1}{\sin \theta} \cdot \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial v}{\partial \theta}\right)=0$	10+10	CO4
Q 11	Give the definition of asymptote of a curve. Also, find all the asymptotes of the following curve $y^{3}-5 x y^{2}+8 x^{2} y-4 x^{3}-3 y^{2}+9 x y-6 x^{2}+2 y-2 x=1$ OR Trace the curve $y^{2} x^{2}=x^{2}-a^{2}$	20	CO3

