

Q 8	In a given electrical network, the equations for the currents i_{1}, i_{2} and i_{3} are $3 i_{1}+i_{2}+i_{3}=8 ; \quad 2 i_{1}-3 i_{2}-2 i_{3}=5 ; \quad 7 i_{1}+2 i_{2}-5 i_{3}=0$. Use Gauss Elimination method to find the currents.	10	CO 3
Q 9	Let $T: P_{3} \rightarrow P_{2}$ be a mapping defined by $T\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=5 a_{0}+a_{3} x^{2}$ Is T is a linear transformation? If yes, find the bases for the range and kernel of T. OR Show that the set of all continuous functions $\mathbf{F}[\mathrm{a}, \mathrm{b}]=\{f(x), x \in$ $\left.[a, b]: \int_{a}^{b} f(x) d x=0\right\}$ is a subspace of $\mathbf{C}[\mathrm{a}, \mathrm{b}]$. Find an example of a subset of $\mathbf{C}[a, b]$ which is not a subspace. Give justification for that.	10	$\mathrm{CO4}$
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
Q 10	In downtown Denver, the traffic flows of a set of four intersecting roads during the rush hours on a typical weekend are shown in the schematic below. The arrow shows the direction and the number besides that is the average number of vehicles leaving and entering per hour. Express the given problem into a system of linear equations and solve the system.	20	CO 3

Q 11	a) Let $M_{n n}$ be the set of all $n \times n$ matrices. Check whether the set of all $n \times n$ upper triangular matrices and set of all $n \times n$ lower triangular matrices are subspaces of $M_{n n}$ or not, with respect to usual matrix addition and scalar matrix multiplication. b) Let $V=\mathbb{R}^{\boldsymbol{n}}$ be a vector space, and $W=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{2}=a_{1}{ }^{2}\right\}$. Check whether W is a subspace of V or not, with respect to usual addition and scalar multiplication OR Find the bases for the null space and row space of $P=\left[\begin{array}{ccc}1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2\end{array}\right]$	20	CO4

