Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Inorganic Chemistry I Program: B.Sc. (H) Chemistry Course Code: CHEM 1003

Semester: I Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	Explain the main postulates of Pauling-Slater theory of covalent bonds.	4	CO3		
Q 2	Draw the Lewis structures of: i) IF ₇ ii) BeCl ₂	4	CO4		
Q 3	Compare between ionic and covalent compounds.	4	CO4		
Q 4	 Give reasons: i) HCl is gas whereas HF is liquid. ii) When two ice cubes are pressed over each other, they unite to form one cube. 	4	CO3		
Q 5	Write the resonating structures of NO_2 and CO_3^{2-} .	4	CO4		
	SECTION B (4Qx10M= 40 Marks)				
Q 6	 Explain the following, giving reason: i) BaSO₄ is very less soluble in water. ii) Sulphur forms two types of oxides viz. SO₂ and SO₃. iii) CO₂ has no dipole moment but SO₂ does. 	3+4+3	CO3		
Q 7	 a) On the basis of Hanmay and Smith equation, calculate the % of ionic character in LiF, LiCl, LiBr and LiI molecules. Given Electronegativity of F = 4.0 Electronegativity of Cl = 3.2 Electronegativity of Br = 3.0 Electronegativity of I = 2.7 Electronegativity of Li = 0.8 b) Which of the following compounds have co-ordinate bonds: BF₃, O₃, PCl₅, SF₆, IF₇, NH₄Cl 	7+3	CO3		

Q 8	 Arrange the following as instructed. Give reason also to support your answer. i) (CH₃)₃N, PH₃, NH₃ (increasing order of melting point) ii) BF₃, AlF₃, GaF₃, InF₃ (increasing order of covalent character) iii) o-dibromobenzene, m-dibromobenzene, p-dibromobenzene (increasing order of dipole moment) OR Discuss the electronic configuration (using MO diagram), bond order and magnetic behavior of the following molecules: i) C₂ ii) O₂ iii) NO 	3+3+4	CO3
Q 9	 a) Use the following data for the given reactions and calculate the value of lattice energy of CaBr₂. i) Ca_(s) + F_{2 (g)} → CaF_{2 (s)}, ΔH = -575.0 kJ/mole ii) Ca_(s) → Ca_(g), ΔH = 178.0 kJ/mole iii) Ca_(g) → Ca⁺⁺_(g) + 2e⁻, ΔH = 1735.0 kJ/mole iv) F_{2(g)} → 2F_(g) ΔH = 353.0 kJ/mole v) F_(g) + e⁻ → F⁻_(g) ΔH = -450.0 kJ/mole b) NaCl solution gives white precipitate with AgNO₃ solution but CCl₄ does not give. Why? 	7+3	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 a) i) Discuss the radial probability distribution curve of 1s, 2s and 3s orbital. ii) What quantum numbers would you assign to the last electron of Rb-atom (Z = 37) as well as its 30th electron? b) i) Write the expression of time independent Schrodinger equation. Write the expression of Hamiltonian operator in one dimension. ii) A radiation of wavelength 200 nm falls on a cesium metal surface. Calculate the velocity of the electron ejected from the metal surface given that the minimum energy required for such ejection is 8×10⁻¹⁹ J. i) What do you mean by dual nature of matter? Show that de Broglie waves can be used to explain the Bohr model 	10+10	CO1
	ii) Distinguish between electron affinity and electronegativity.	10+10	

Q 11	 i) Discuss the Slater's Rules for calculating screening constant (σ) and effective nuclear charge (Z_{eff}). ii) Explain Pauli's exclusion, Hund's rule of maximum spin multiplicity and Aufbau principle with example. 	10+10	CO2	
------	--	-------	-----	--