| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Course: B Tech Semester: V <br> Program: CSE (All IBM + Xebia) Time $: 03$ <br> Course Code: CSEG4001 Max. Marks <br>   <br> Instructions: Answer all the Questions  |  |  |  |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | What is the difference between a monoalphabetic cipher and a polyalphabetic cipher? | 4 | CO1 |
| Q 2 | What entities constitute a full-service Kerberos environment? | 4 | CO3 |
| Q 3 | What is the difference between weak and strong collision resistance? | 4 | CO2 |
| Q 4 | What is the difference between direct and arbitrated digital signatures? | 4 | CO3 |
| Q 5 | What is the sum of three points on an elliptic curve that lie on a straight line? | 4 | CO 2 |
| SECTION B |  |  |  |
| Q 6 | Differentiate between symmetric and asymmetric cipher. Encrypt the plaintext using this Play fair cipher having key "Sunil" and message is: "cryptography is a secret writing". | 10 | CO1 |
| Q 7 | List four techniques used by firewalls to control access and enforce a security policy. | 10 | CO4 |
| Q 8 | What are the different services provided by IPsec? How AH and ESP are used in the architecture of IPsec. | 10 | CO3 |
| Q 9 | Decipher the message YITJP GWJOW FAQTQ XCSMA ETSQU SQAPU SQGKC PQTYJ using the Hill cipher with the inverse key $=\left(\begin{array}{ll}5 & 1 \\ 2 & 7\end{array}\right)$. Show your calculations and the result. <br> OR <br> Encrypt the message "meet me at the usual place at ten rather than eight oclock" using the Hill cipher with the key $=\left(\begin{array}{ll}9 & 4 \\ 5 & 7\end{array}\right)$. Show your calculations and the result. | 10 | CO1 |
| SECTION-C |  |  |  |


| Q 10 | Why do we use public key cryptography? Describe the role of the RSA algorithm <br> and perform encryption and decryption using the RSA algorithm for the <br> following: <br> (a) $\mathrm{p}=3, \mathrm{q}=11, \mathrm{e}=7, \mathrm{M}=5$ <br> (b) $\mathrm{p}=11, \mathrm{q}=13, \mathrm{e}=11, \mathrm{M}=7$ <br> Explain public key management in cryptography. Whether Diffie-Hellman <br> supports in public key management, also solve the following example and show <br> your calculations and the result: <br> Alice and Bob use the Diffie-Hellman key exchange technique with a common <br> prime q $=23$ and a primitive root $\alpha=5$. <br> a. If Bob has a public key YB $=10$, what is Bob's private key YB? <br> b. If Alice has a public key YA $=8$, what is the shared key K with Bob? <br> c. Show that 5 is a primitive root of 23. | $\mathbf{2 0}$ | $\mathbf{C O 2}$ |
| :---: | :--- | :--- | :--- |
| Q 11 | Explain the following: <br> a Intrusion Detection System <br> b) Trusted Systems <br> c) Zero Knowledge Protocol <br> d) Biometric Authentication | $\mathbf{2 0}$ | $\mathbf{C O 4}$ |

