Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Compiler Design Program: BTech CSE (All Branches) Course Code: CSEG3015 Semester: V Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all Questions

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Give the syntax-directed definition for if-else statement.	4	CO1
Q 2	Discuss the error handling mechanism in Parsing Phase.	4	CO2
Q 3	Draw a DAG for the expression $a + a^{*}(b-c) + (b-c)^{*}d$	4	CO3
Q 4	Mention the issues to be considered while applying the techniques for code optimization.	4	CO4
Q 5	Illustrate the properties of optimizing compiler.	4	CO1
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Construct SLR (1) Parsing table for the given grammar. $S \rightarrow P$ $P \rightarrow (P)P$ $P \rightarrow \varepsilon$ Also identify at least one entry in the Parsing table that would be a Shift/Reduce or Reduce/Reduce Conflict.	10	CO2
Q 7	Give a CFG for the language $\{0^i 1^j 2^k i+j > 2k\}$	10	CO3
	OR		
Q 7	Consider the CFG given below: - $S \rightarrow EN$ $E \rightarrow E + T E - T T$ $T \rightarrow T * F T / F F$ $F \rightarrow (E) digit$ $N \rightarrow ;$	10	CO3

	 (a) Obtain the Syntax Directed Definition for the above grammar. (b) Construct the annotated parse tree for the input string 5*6 +7. 		
Q 8	Demonstrate activation trees. Construct an activation tree for quick sort.	10	CO4
Q 9	 Programming languages are usually compiled into the machine code of the target computer, but sometimes an interpretive system is used. Discuss the relative merits of these two approaches. Outline the key features of the design of an interpretive code that would 	10	CO1
	be suitable for an implementation of the C programming language and describe the overall structure of an interpreter for it.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Suppose that we want to describe Java style class declarations like these using a grammar:		
	class Car extends Vehicle public class JavaIsCrazy implements Factory, Builder, Listener public final class President extends Person implements Official		
	One such grammar for this is (1) $C \rightarrow P F$ class identifier X Y (2) $P \rightarrow public$		
	(3) $P \rightarrow \varepsilon$ (4) $F \rightarrow \text{final}$ (5) $F \rightarrow \varepsilon$ (6) $X \rightarrow \text{extends identifier}$	20	CO2
	(7) $X \to \varepsilon$ (8) $Y \to \text{implements I}$ (9) $Y \to \varepsilon$ (10) $I \to \text{identifier J}$		
	(10) $I \to Remarker J$ (11) $J \to, I$ (note the comma before the I) (12) $J \to \varepsilon$		
	Construct an LL (1) parser table for this grammar. When indicating which productions should be performed, use the numbering system from above.		
Q 11	Construct SLR (1) Parsing table for the grammar given below: $S \rightarrow R$ $P \rightarrow PR$		
	$ \begin{array}{l} R \rightarrow RR \\ R \rightarrow R \mid R \\ R \rightarrow R^* \end{array} \qquad (note that \mid is a terminal symbol in the grammar) \\ \end{array} $	20	CO3
	$R \rightarrow \epsilon$ (note that ϵ is a terminal symbol in the grammar)		

	$R \rightarrow a$ $R \rightarrow (R)$ Resolve the conflicts (if any) by using precedence rules for regular expressions. LR (1) is a much stronger parsing algorithm than SLR (1). Would using an LR (1) parser instead of the SLR (1) parser resolve the ambiguities? Why or why not?		
	OR		
Q 11	Identify the basic blocks, draw a flow graph, and identify the loop invariant statement for the following code snippet. for (i = 1 to n) { a[i] =0; }	20	CO3