Name: Enrolment No:			
Course: Probability and Statistics for Engineers Program: B.Tech.-H-CSE-Spz-AI\&ML/BAO/BDATA Course Code: CSEG 2036P		Semester: III Time : 03 hrs . Max. Marks: 100	hrs. 0
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$			
S. No.		Marks	CO
Q 1	If two dice are thrown, what is the probability that the sum is (a) greater than 8 , and (b) neither 7 nor 11 ?	4	$\mathrm{CO1}$
Q 2	Show that the coefficient of correlation r is independent of a change of scale and origin of the variables. Also prove that for two independent variables $r=0$. Show by an example that the converse is not true.	4	$\mathrm{CO5}$
Q 3	With the usual notations, find p for a binomial random variable X if $n=$ 6 and if $9 P(X=4)=P(X=2)$.	4	CO 2
Q 4	Each coefficient in the equation $h x^{2}+g x+c=0$ is determined by throwing an ordinary die. Find the probability that the equation will have real roots.	4	$\mathrm{CO3}$
Q 5	Prove the given statement: If one of the regression coefficients is greater than unity, the other must be less than unity.	4	$\mathrm{CO4}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	For any three events, A, B and C defined on the sample space S such that $B \subset C$ and $P(A)>0$ then $P(B \mid A) \leq P(C \mid A)$.	10	CO1
Q 7	Show that for $p=0.50$, the binomial distribution has a maximum probability at $X=\frac{n}{2}$, if n is even, and at $X=\frac{1}{2}(n-1)$ as well as $X=$ $\frac{1}{2}(n+1)$, if n is odd.	10	CO2
Q 8	Obtain the regression equation of Y on X for the following distribution: $f(x, y)=\frac{y}{(1+x)^{4}} e^{-\frac{y}{1+x}} ; x, y \geq 0$.	3+3+4	$\mathrm{CO3}$
Q 9	X is a normal variate with mean 30 and standard deviation 5. Find the probabilities that a. $26 \leq X \leq 40$ b. $X \geq 45$ c. $\|X-30\|>5$.	10	$\mathrm{CO3}$

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible: Variance of $\mathrm{X}=9$. Regression equations: $8 \mathrm{X}-10 \mathrm{Y}+66=0,40 \mathrm{X}-18 \mathrm{Y}=214$. What were (i) the mean values of X and Y , (ii) the correlation coefficient between X and Y , and (iii) the standard deviation of Y ?	6+6+8	$\mathrm{CO5}$
Q 11	a. In a distribution exactly normal, 7% of the items are under 35 and 89% are under 63. What are the mean and standard deviation of the distribution? b. Of a large group of men, 5% are under 60 inches in height and 40% are between 60 and 65 inches. Assuming a normal distribution, find the mean height and standard deviation. OR Show that, if a and b are constants and r is the correlation coefficient between X and Y, then the correlation coefficient between $a X$ and $b Y$ is equal to r if the signs of a and b are alike, and to $-r$ if they are (different). Also show that, if constants a, b and c are positive, the correlation coefficient between $(a X+b Y)$ and $c Y$ is equal to $\left(a r \sigma_{X}+b \sigma_{Y}\right) /\left(a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b r \sigma_{X} \sigma_{Y}\right)^{\frac{1}{2}}$	$\begin{gathered} 10+10 \\ \text { OR } \\ 10+10 \end{gathered}$	$\begin{aligned} & \mathrm{CO4} \\ & \mathrm{OR} \\ & \mathrm{CO} 4 \end{aligned}$

