Name:

Enrolment No.:

Semester: 3^{rd}

Time: 3 hour Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2022

Program Name : MCA Course Name : Deep Learning and ANN
Course Code : CSAI8003
No. of Page(s) : 3

Instructions : Attempt all

SECTION-A											
S. No.									Marks	CO	
Q.1	Convolution 183 182 186 189 191 191									CO2 CO3	
	186	185	191	184	132	85				003	
	187	192		44	16						
	189	155	27	13		12					
	181	37	14	14	15						
	96	16	14	14	15	14					
	Figure 1: Image image for Question 1 Consider the following 6X6 image for convolution operation. (a) Is this a colour image, grayscale image or a black and white image? Give reason for your answer. (b) We have to convolve the image with 3x3 and 5X5 kernels.										
	W	hat wil ny assur	(4)								
	(c) State two 3X3 convolution kernel which will compute the gradient of the image in x and y directions.										
	(d) What are symmetric and non-symmetric kernels? What are the types of your kernels?								(4)		
	(e) How are convolution and correlation operations different and how are they similar?								(4)		
	(f) Compute and state the results of convolution and correltaion for the above image with your two kernels.								(14)		
Q.2	Neural networks (MLP) and Activation functions (a) What are activation functions? What is their role in Neural								35	CO1 CO3	
	networks? State three activation functions you are familer with.										
	(b) Give the formulas for your activation functions and their derivatives.										
	(c) What are the range of values your activation functions can take? What are their values and the values of their derivatives when the input is zero?								(12)		
		/hat are ms in n				d explo	ding gradient p	rob-	(4)		
	(e) Give three design consideration in chosing an activation function.										
					Pag	ge 2					

SECTION-B								
S. No.		Marks	CO					
Q.3	Non-linear regression MLP We have a problem of multivariate non-linear regression. There are 100 input features for the problem and we need to predict thee output variables. We have to construct a two hidden layer MLP for this problem. (a) What will be the number of nodes in the input and output	33	CO 2					
	layer? (b) Let there be two hidden layers with 10 nodes each. Construct a computational graph representation of this MLP.	(2)						
	(c) Compute the total number of trainable parameters for this MLP. Please do show the intermediate steps for your computation for each layer.	(10)						
	(d) What will be your choice of activation functions in the hidden and output layers of your MLP? Give reasons for your choice.	(6)						
	(e) What are loss functions in neural network models? Give three examples of loss functions? What is the difference between loss function and objective function?	(6)						
	(f) Give your choice for a loss function for this problem and state two reasons for this choice.	(3)						