Name:

Enrolment No:

CO1

10

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

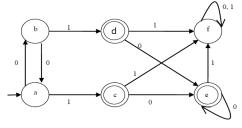
Course: Formal Languages & Automata Theory

Semester: III

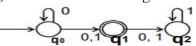
Program: B.Tech CSE (Hons.) All Branches

Time : 03 hrs.

Course Code: CSEG 2035P Max. Marks: 100


Instructions:

SECTION A (5Qx4M=20Marks)


S. No.		Marks	CO
Q 1	Prove that the complement of a regular language is also regular.	4	CO2
Q 2	Construct a DFA for the language over $\{0, 1\}^*$ such that it contains "000" as a substring.	4	CO1
Q 3	Construct a ε -NFA for the following regular expression. $(0+1)*(00+11)(0+1)*$	4	CO2
Q 4	State the pumping lemma for regular languages. Discuss the applications of regular expression?	4	CO2
Q 5	State the relations among regular expression, deterministic finite automata, non-deterministic finite automaton and finite automaton with epsilon transition.	4	CO1

SECTION B (4Qx10M= 40 Marks)

Q 6 a)Minimize the DFA shown in the following diagram.

b) Convert the following NFA into an equivalent DFA.

Q 7	Construct a regular expression for the given finite automata using state elimination method.	10	CO2	
Q 8	Convert the following grammar into an equivalent one with no unit productions and no useless symbols S→ABA ,A→aAA aBC bB, B→A bB Cb, C→CC Cc	10	CO3	
Q 9	Convert the Mealy machine into equivalent Moore machine. $b/0$ $a/1$ $b/0$ $a/1$ $b/0$ $a/1$	10	CO1	
SECTION-C (2Qx20M=40 Marks)				
Q 10	a) Design a PDA automata which accepts $L = \{0^n 1^n \mid n \ge 1\}$. b) Design a PDA for the grammar: $S \to aABC$ $A \to aB \mid a B \to bA \mid b C \to a$	20	CO3	
Q 11	 a) Design a Turing Machine that recognizes the language consisting of all strings of 0's whose length is a power of 2 i.e. L = { 0^{2^m} m ≥ 0} . b) Write short notes on the following: i) Recursive and Recursive enumerable language ii) Decidable and undecidable language 	20	CO4	