Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Formal Languages & Automata Theory Semester: III Program: B.Tech CSE (Hons.) All Branches Time : 03 hrs. Course Code: CSEG 2035P

Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Prove that the complement of a regular language is also regular.	4	CO2
Q 2	Construct a DFA for the language over $\{0, 1\}^*$ such that it contains "000" as a substring.	4	CO1
Q 3	Construct a ϵ -NFA for the following regular expression. (0+1)*(00+11)(0+1)*	4	CO2
Q 4	State the pumping lemma for regular languages. Discuss the applications of regular expression?	4	CO2
Q 5	State the relations among regular expression, deterministic finite automata, non-deterministic finite automaton and finite automaton with epsilon transition.	4	CO1
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	 a)Minimize the DFA shown in the following diagram. a) 1 a) 1	10	CO1

Q 7	Construct a regular expression for the given finite automata using state elimination method.	10	CO2
Q 8	Convert the following grammar into an equivalent one with no unit productions and no useless symbols S \rightarrow ABA ,A \rightarrow aAA aBC bB, B \rightarrow A bB Cb, C \rightarrow CC Cc	10	CO3
Q 9	Convert the Mealy machine into equivalent Moore machine. $b/0$ $a/1$ g_1 $b/1$ g_2 $a/1$ $a/1$	10	CO1
	SECTION-C (2Qx20M=40 Marks)		
Q 10	a) Design a PDA automata which accepts $L = \{0^n 1^n n \ge 1\}$. b) Design a PDA for the grammar: $S \to aABC$ $A \to aB a B \to bA b C \to a$	20	CO3
Q 11	 a) Design a Turing Machine that recognizes the language consisting of all strings of 0's whose length is a power of 2 i.e. L = { 0^{2^m} m≥0}. b) Write short notes on the following: i) Recursive and Recursive enumerable language ii) Decidable and undecidable language 	20	CO4