Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022 Course: Formal Languages \& Automata Theory Semester: III Program: B.Tech CSE (Hons.) All Branches Time : 03 hrs . Course Code: CSEG 2035P Max. Marks: 100 Instructions:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Prove that the complement of a regular language is also regular.	4	$\mathrm{CO2}$
Q 2	Construct a DFA for the language over $\{0,1\}^{*}$ such that it contains " 000 " as a substring.	4	CO1
Q 3	Construct a ε-NFA for the following regular expression. $(0+1) *(00+11)(0+1)^{*}$	4	CO 2
Q 4	State the pumping lemma for regular languages. Discuss the applications of regular expression?	4	CO2
Q 5	State the relations among regular expression, deterministic finite automata, non-deterministic finite automaton and finite automaton with epsilon transition.	4	$\mathrm{CO1}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	a)Minimize the DFA shown in the following diagram. b) Convert the following NFA into an equivalent DFA.	10	CO1

Q 7	Construct a regular expression for the given finite automata using state elimination method.	10	CO 2
Q 8	Convert the following grammar into an equivalent one with no unit productions and no useless symbols $\mathrm{S} \rightarrow \mathrm{ABA}, \mathrm{A} \rightarrow \mathrm{aAA}\|\mathrm{aBC}\| \mathrm{bB}, \mathrm{B} \rightarrow$ $\mathrm{A}\|\mathrm{bB}\| \mathrm{Cb}, \mathrm{C} \rightarrow \mathrm{CC} \mid \mathrm{Cc}$	10	$\mathrm{CO3}$
Q 9	Convert the Mealy machine into equivalent Moore machine.	10	CO1
$\begin{gathered} \text { SECTION-C } \\ (2 \mathrm{Qx} 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 10	a) Design a PDA automata which accepts $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. b) Design a PDA for the grammar: $S \rightarrow a A B C$ $A \rightarrow a B\|a B \rightarrow b A\| b C \rightarrow a$	20	$\mathrm{CO3}$
Q 11	a) Design a Turing Machine that recognizes the language consisting of all strings of 0's whose length is a power of 2 i.e. $L=\left\{0^{2^{m}} \mid m \geq 0\right\}$. b) Write short notes on the following: i) Recursive and Recursive enumerable language ii) Decidable and undecidable language	20	$\mathrm{CO4}$

