Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Design and Analysis of Algorithms Program: B.Tech Course Code: CSEG 2022 Semester: III Time: 03 hrs. Max. Marks: 100

**Instructions:** All questions of the section A is mandatory. In section B, attempt any one of the Q 9 and Q 10. In section C, attempt either Q 12 or Q 13. Remaining questions from sections B and C are mandatory. **SECTION A** 

|        | (5Qx4M=20Marks)                                                                                                                                                                                         |           |     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| S. No. |                                                                                                                                                                                                         | Marks     | СО  |
| Q 1    | What is an algorithm and how it is different from a program?                                                                                                                                            | 3+1       | CO1 |
| Q 2    | Solve the recurrence relation using Master Theorem $T(n) = 4T(n/3) + n^2$                                                                                                                               | 4         | CO2 |
| Q 3    | Find the solution to the following recurrence equation $T(n)=T(n/2)+1$ with the base condition as $T(1)=1$                                                                                              | 4         | CO1 |
| Q 4    | Derive the time complexity of Quick sort algorithm for worst case.                                                                                                                                      | 4         | CO2 |
| Q 5    | Distinguish between Dynamic Programming and Greedy method.                                                                                                                                              | 4         | CO3 |
|        | SECTION B                                                                                                                                                                                               |           |     |
|        | (4Qx10M= 40 Marks)                                                                                                                                                                                      |           |     |
| Q 6    | What is a Spanning tree? Explain Prim's Minimum cost spanning tree algorithm with suitable example                                                                                                      | 2+6+2     | CO3 |
| Q 7    | Describe asymptotic notations? Illustrate any three notations with diagrams. How the performance can be analyzed with these notations?                                                                  | 2+8       | CO1 |
| Q 8    | Explain Activity Selection problem in detail with suitable example?                                                                                                                                     | 10        | CO2 |
| Q 9    | Explain Task Scheduling Problem with deadline and Penalty.                                                                                                                                              |           |     |
|        | OR                                                                                                                                                                                                      | 10        | CO4 |
| Q 10   | Describe the Dynamic 0/1 Knapsack Problem. Find an optimal solution for the dynamic programming 0/1 knapsack instance for n=3, m=6, profits are (p1, p2, p3) = (1,2,5), weights are (w1,w2,w3)=(2,3,4). | 2+8       | CO4 |
|        | SECTION-C                                                                                                                                                                                               |           |     |
| 0.11   | (2Qx20M=40 Marks)                                                                                                                                                                                       |           |     |
| Q 11   | Explain Huffman coding with its characteristics.<br>Consider the following characters with their frequencies in a file                                                                                  | 3+8+3+3+3 | CO3 |

|      | a-10, e-15, i-12, o-3, u-4, s-13, t-1. If Huffman coding is used for data                                                                   |         |     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
|      | compression, determine                                                                                                                      |         |     |
|      | i) Create a Huffman tree for the following message                                                                                          |         |     |
|      | ii) Huffman code for each character                                                                                                         |         |     |
|      | iii) Average code length                                                                                                                    |         |     |
|      | iv) Length of Huffman encoded message (in bits)                                                                                             |         |     |
| Q 12 | i) Explain Merge sort with its characteristics                                                                                              |         |     |
|      | ii) Apply merge sort algorithm to arrange the following array of                                                                            |         |     |
|      | numbers in increasing order                                                                                                                 |         |     |
|      | 100, 55, 70, 1, 30, 75, 27, 5, 25, 34                                                                                                       |         |     |
|      | iii) Is merge sort a stable sort?                                                                                                           | 4+8+2+6 | CO3 |
|      | iv) Find the time complexities if the algorithm in worst and best                                                                           |         |     |
|      | cases.                                                                                                                                      |         |     |
|      | OR                                                                                                                                          |         |     |
| Q 13 | What is Radix sort and how it is different from the comparison-based sorting? Consider the following keys and apply Radix sorting algorithm |         |     |
|      | to arrange the keys in non-decreasing order                                                                                                 | 5+10+5  | CO4 |
|      | 171,290, 111, 144, 97, 836, 414, 189, 212. Find the time complexities in                                                                    |         |     |
|      | all the three cases.                                                                                                                        |         |     |