Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Design and Analysis of Algorithms

Program: B.Tech

Course Code: CSEG 2022

Semester: III

Time: 03 hrs.

Max. Marks: 100

Instructions: All questions of the section A is mandatory. In section B, attempt any one of the Q 9 and Q 10. In section C, attempt either Q 12 or Q 13. Remaining questions from sections B and C are mandatory.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO	
Q 1	What is an algorithm and how it is different from a program?	3+1	CO1	
Q 2	Solve the recurrence relation using Master Theorem $T(n) = 4T(n/3) + n^2$	4	CO2	
Q 3	Find the solution to the following recurrence equation $T(n)=T(n/2)+1$ with the base condition as $T(1)=1$	4	CO1	
Q 4	Derive the time complexity of Quick sort algorithm for worst case.	4	CO2	
Q 5	Distinguish between Dynamic Programming and Greedy method.	4	CO3	
SECTION B				
	(4Qx10M = 40 Marks)			
Q 6	What is a Spanning tree? Explain Prim's Minimum cost spanning tree algorithm with suitable example	2+6+2	CO3	
Q 7	Describe asymptotic notations? Illustrate any three notations with diagrams. How the performance can be analyzed with these notations?	2+8	CO1	
Q 8	Explain Activity Selection problem in detail with suitable example?	10	CO2	
Q 9	Explain Task Scheduling Problem with deadline and Penalty.	,		
	OR	10	CO4	
Q 10	Describe the Dynamic $0/1$ Knapsack Problem. Find an optimal solution for the dynamic programming $0/1$ knapsack instance for $n=3$, $m=6$, profits are $(p1, p2, p3) = (1,2,5)$, weights are $(w1,w2,w3)=(2,3,4)$.	2+8	CO4	
SECTION-C (2Qx20M=40 Marks)				
Q 11 Explain Huffman coding with its characteristics.				
Q 11	Consider the following characters with their frequencies in a file	3+8+3+3+3	CO3	

	a-10, e-15, i-12, o-3, u-4, s-13, t-1. If Huffman coding is used for data		
	compression, determine		
	i) Create a Huffman tree for the following message		
	ii) Huffman code for each character		
	iii) Average code length		
	iv) Length of Huffman encoded message (in bits)		
Q 12	i) Explain Merge sort with its characteristics		
	ii) Apply merge sort algorithm to arrange the following array of		
	numbers in increasing order		
	100, 55, 70, 1, 30, 75, 27, 5, 25, 34		
	iii) Is merge sort a stable sort?	4+8+2+6	CO3
	iv) Find the time complexities if the algorithm in worst and best		
	cases.		
	OR		
Q 13	What is Radix sort and how it is different from the comparison-based sorting? Consider the following keys and apply Radix sorting algorithm		
	to arrange the keys in non-decreasing order	5+10+5	CO4
	171,290, 111, 144, 97, 836, 414, 189, 212. Find the time complexities in		
	all the three cases.		