Name: Enrolment No:			
Course: Computer Graphics Semester: III Program: MCA Time $: 03$ Course Code: CSEG-8005 Max. Marks: 100 Instructions: Attempt all questions			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q1	Compare Vector and Random Scan display.	4 marks	CO1
Q2	Explain the basic design of CRT with a diagram and bring out the difference between the working mechanism of CRT and Colored CRT.	4 marks	CO1
Q3	If we are to plot only $(1 / 8)^{\text {th }}$ of a circle using mid-point circle generation algorithm then write down the steps required to do so.	4 marks	CO2
Q4	Bring out the differences between 2D and 3D transformations in OpenGL.	4 marks	CO2
Q5	Contrast between Z-buffer and Depth buffer algorithms.	4 marks	CO3
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6	Explain the Cohen- Sutherland Line clipping algorithm with proper example and diagram representation.	10 marks	CO3
Q7	Using Mid-Point Ellipse Algorithm to determine raster positions for the radius values $\mathrm{R}_{\mathrm{x}}=8$ and $\mathrm{R}_{\mathrm{y}}=6$.	10 marks	CO4
Q8	Consider the line from $(5,5)$ to $(13,9)$. Use the Bresenham's algorithm to rasterize the line.	10 marks	CO4
Q9	State the differences between Phong model and Gouraud model and Determine curve parameters for a Bezier curve having the points $\mathrm{B}_{0}(0,10), \mathrm{B}_{1}(10,50), \mathrm{B}_{2}(70,40)$ and $\mathrm{B}_{3}(70,-20)$. OR After rotation of a point from position (x, y) to position ($\mathrm{x} 1, \mathrm{y} 1$) through an angle θ relative to the co-ordinate origin. The original angular displacement of the point from x -axis is φ then what would be the rotation matrix.	10 marks	CO4

$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q10	Explain rotation about an arbitrary axis in 3D. Also rotate a rectangular parallelopiped by -90° about x axis having lengths on x axis, y axis and z axis as 3,2 and 1 respectively.	20 marks	$\mathrm{CO5}$
Q11	Using Sutherland-Hodgeman Polygon Clipping, clip the polygon shown below showcasing all the steps involved. OR Explain Composite transformation method. And Translate the square ABCD whose coordinates are $\mathrm{A}(0,0), \mathrm{B}(3,0), \mathrm{C}(3,3), \mathrm{D}(0,3)$ by 2 - units in both directions and then scale it by 1.5 units in x - direction and 0.5 units in y direction.	20 marks	$\mathrm{CO5}$

