Name: Enrolment No:	
	unive

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, Dec 2022

Course: Engineering Physics
Program: B.Tech. CS (Batches 1-20)

Course Code: PHYS 1023

Instructions:

- All questions are compulsory (Q. No. 9 and Q. No. 11 has an internal choice)
- All highlighted representations are vector quantities.
- Scientific calculators can be used for calculations.

SECTION A

(5Q $\times 4 \mathrm{M}=20$ Marks)

- All questions are compulsory, Each Question carries 4 Marks
- Write very Short Answers/ Solve

Q. No.	Statement of question	Marks	CO
Q 1.	The surfaces $\rho=3, \phi=100^{\circ}, z=3$ and $\rho=5, \phi=130^{\circ}, z=4.5$ define a closed surface. Find the enclosed volume.	$\mathbf{4}$	$\mathbf{C O 2}$
Q 2.	Outline Maxwell's equations in differential and integral forms for time variant fields.	$\mathbf{4}$	$\mathbf{C O 2}$
Q 3.	Explain Ampere's Circuital law with proper diagram.	$\mathbf{4}$	$\mathbf{C O 3}$
Q 4.	Calculate the de-Broglie wavelength of an α particle accelerated through a potential difference of 200 volts.	$\mathbf{4}$	$\mathbf{C O 4}$
Q 5.	Explain quantum computing and its application.	$\mathbf{4}$	$\mathbf{C O 5}$

SECTION B

($4 Q \times 10 \mathrm{M}=40$ Marks)

- All questions are compulsory, Q 9. has an internal choice, Each Question carries 10 Marks
- Write Short/ Brief notes/ Derive/ Solve

Q 6.	Define Electric potential and establish a relation between electric potential and electric field intensity. Show that the Electrostatic field is a conservative field.	10	CO 2
Q 7.	(a) Explain Faraday's Law of induction. Apply Faraday's law to describe motional EMF. (b) In a certain conducting region, $\begin{equation*} \mathbf{H}=y z\left(x^{2}+y^{2}\right) \boldsymbol{a}_{\boldsymbol{x}}-y^{2} x z \boldsymbol{a}_{\boldsymbol{y}}+4 x^{2} y^{2} \boldsymbol{a}_{z} \mathrm{~A} / \mathrm{m} \tag{4} \end{equation*}$ Determine the value of \mathbf{J} at $(5,2,-3)$.	10	CO 3
Q 8.	(a) Mention any four differences between a classical computer and quantum computer. (b) Given $\|\psi\rangle=3\|0\rangle-2 i\|1\rangle$. Find its normalized state.	10	CO5
Q 9.	(a) What are the important conclusions that can be drawn from the Davisson and Germer's experiment?		

