Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Engineering Mathematics Program: B.Tech. SoCS (All Batches) Course Code: MATH 1052 Semester: I Time: 03 hrs. Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

- 1) Mention Enrolment No. at the top of the question paper.
- 2) Attempt all the parts of a question at one place only.

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO CO1
Q 1	Examine the following vectors for linear dependence and find the relation if it exists. $X_1 = (1,1,-1,1), X_2 = (1,-1,2,-1), X_3 = (3,1,0,1).$	4	
Q 2	If $y = e^{ax}sinbx$, prove that $y_2 - 2ay_1 + (a^2 + b^2)y = 0$.	4	CO2
Q 3	Solve $(D-1)^2 y = (e^{2x}x + sin^2x).$	4	CO3
Q 4	In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10, use Poisson distribution to calculate its mean.	4	CO4
Q 5	Obtain $\sqrt{12}$, to five places of decimals by Newton Raphson method.	4	CO5
	SECTION B (4Qx10M= 40 Marks)		
Q 6	If $y = x^n log x$, prove that $y_{n+1} = \frac{n!}{x}$.	10	CO2
Q 7	Solve, by the method of variation of parameters, $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x logx$.	10	CO3
Q 8	In a certain distribution, the first four moments about a point are -1.5, 17,-30 and 108. Calculate β_1 , β_2 and state whether the distribution is leptokurtic or platykurtic.	10	CO4

	The values of x and y are given as below						
	x:5	6	9	11			
	y : 12		14	16			
	Using Newton's forward interpolation formula, find y at $x = 7$.						
Q9	OR				10	CO5	
	Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ by using Simpson's 1/3 and 3/8 rule (choose $h = 1/6$). Hence obtain the approximate value of π .						
SECTION-C (2Qx20M=40 Marks)							
	a) Change the or	rder of integration ar	nd hence evaluation	ate $\int_0^a \int_V^a \frac{x dx dy}{x^2 + y^2}$.			
	b) Evaluate $\iint_R x^2 dxdy$, where R is the region in the first quadrant bounded by the lines $x = y, y = 0, x = 8$ and the curve $xy = 16$.						
Q 10			OR		20	CO2	
	c) Evaluate \int_0^∞ . d) Evaluate $\int_0^1 \int$	$\int_{0}^{\infty} \frac{e^{-(x^{2}+y^{2})}dxdy}{\int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xy}$	y changing to p z dx dy dz.	oolar coordinates.			
Q 11		ta method of fourth of $\frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$.As			ion at 20	CO5	