Name: Enrolment No:	$\because G \cup F E$

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2022

Course: Engineering Mathematics

Program: B.Tech. SoCS (All Batches)
Course Code: MATH 1052

Semester: I
Time: 03 hrs.
Max. Marks: 100

Instructions: Read all the below mentioned instructions carefully and follow them strictly:

1) Mention Enrolment No. at the top of the question paper.
2) Attempt all the parts of a question at one place only.

$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Examine the following vectors for linear dependence and find the relation if it exists. $X_{1}=(1,1,-1,1), X_{2}=(1,-1,2,-1), X_{3}=(3,1,0,1)$.	4	CO1
Q 2	If $y=e^{a x} \sin b x$, prove that $y_{2}-2 a y_{1}+\left(a^{2}+b^{2}\right) y=0$.	4	CO2
Q 3	Solve $(D-1)^{2} y=\left(e^{2 x} x+\sin 2 x\right)$.	4	CO3
Q 4	In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10 , use Poisson distribution to calculate its mean.	4	CO4
Q 5	Obtain $\sqrt{12}$, to five places of decimals by Newton Raphson method.	4	CO5
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \mathrm{Marks}) \end{gathered}$			
Q 6	If $y=x^{n} \log x$, prove that $y_{n+1}=n!/ x$.	10	CO2
Q 7	Solve, by the method of variation of parameters, $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=e^{x} \log x$.	10	CO 3
Q 8	In a certain distribution, the first four moments about a point are $-1.5,17,-30$ and 108. Calculate β_{1}, β_{2} and state whether the distribution is leptokurtic or platykurtic.	10	CO4

Q9	The values of x and y are given as below Using Newton's forward interpolation formula, find y at $x=7$. OR Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using Simpson's $1 / 3$ and $3 / 8$ rule (choose $h=1 / 6$). Hence obtain the approximate value of π.	10	CO5
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	a) Change the order of integration and hence evaluate $\int_{0}^{a} \int_{\mathrm{y}}^{a} \frac{x d x d y}{x^{2}+y^{2}}$. b) Evaluate $\iint_{R} x^{2} d x d y$, where R is the region in the first quadrant bounded by the lines $x=y, y=0, x=8$ and the curve $x y=16$. OR c) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates. d) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z$.	20	CO2
Q 11	Use Runge - Kutta method of fourth order to find the numerical solution at $x=0.4$ for $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$.Assume step size $h=0.2$.	20	$\mathrm{CO5}$

