Name: Enrolment No:			
Course: Algorithm Design and Analysis Semester: I Program: M.Tech (CSE) Time $: \mathbf{0 3}$ hrs. Course Code: CSEG 7001 Max. Marks: $\mathbf{1 0 0}$ Instructions:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Give the suitable examples to support the following argument that "Data structure plays an important role in efficiently solving the problems"	4	CO1
Q 2	Compute the time complexity for merge sort algorithm using recursion tree.	4	CO 2
Q 3	What is optimal substructure and overlapping sub problem?	4	CO3
Q 4	Compute the Big Oh for the following. a) $\begin{gathered} \text { for }(\mathrm{j}=0 ; \mathrm{i}<\mathrm{n}-1 ; \mathrm{i}++) \\ \mathrm{A}[\mathrm{i}]=+; \end{gathered}$ b) $\begin{aligned} & \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++) \\ & \text { for }(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++) \\ & \operatorname{for}(\mathrm{k}=\mathrm{j} ; \mathrm{k}<\mathrm{n} ; \mathrm{k}++) \\ & \mathrm{A}++; \end{aligned}$	4	CO1
Q 5	Explain the P, NP, NP-hard, NP-complete classes? Give relationship between them?	4	CO 4
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	$\mathrm{A}=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right] \mathrm{B}=\left[\begin{array}{ll}3 & 4 \\ 5 & 1\end{array}\right]$ devise the algorithms to compute AxB with the following conditions. a) Algorithm-1's recurrence should be $8 \mathrm{~T}\left(\frac{\mathrm{n}}{2}\right)+\Theta\left(n^{2}\right)$ b) Algorithm-2's recurrence should be $7 \mathrm{~T}\left(\frac{\mathrm{n}}{2}\right)+\Theta\left(n^{2}\right)$	10	$\begin{gathered} \mathrm{CO} 1, \mathrm{CO} \\ \hline \end{gathered}$

Q 7	Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where $\mathrm{V}=\{1,2,3,4\}$ and $\mathrm{E}=\{(1,2),(2,3),(2,4),(3,4)\}$ and suppose that $\mathrm{k}=3$, devise an algorithm such that adjacent nodes get different colors.	10	CO 3
Q 8	Devise the algorithm to find k'th smallest element in given unsorted array of ' n ' elements with $\mathrm{O}(\mathrm{n})$ time complexity.	10	CO 2
Q 9	Compute the MST using Prim's algorithm (OR) Find an optimal Huffman code for the following a set of frequencies: a:40 b:20 c:10 \quad d:45 e:80	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ (2 \mathrm{Q} \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q10	Compute the best way to multiply a chain of matrices with the dimensions 4X10 10X3 3X12 12X20 20X7. Show your work.	20	CO3
Q11	Let T be a text of length n , and let P be a pattern of length m . Describe an $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time method for finding the longest prefix of P that is a substring of T . (OR) How the failure function of KMP algorithm works?	20	CO 4

