Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Algorithm Design and Analysis Program: M.Tech (CSE) Course Code: CSEG 7001

Semester: I Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Give the suitable examples to support the following argument that "Data structure plays an important role in efficiently solving the problems"	4	CO1
Q 2	Compute the time complexity for merge sort algorithm using recursion tree.	4	CO2
Q 3	What is optimal substructure and overlapping sub problem?	4	CO3
Q 4	Compute the Big Oh for the following. a) $for(j=0;iA[i]=+;b) for(i=0;ifor(j=i;jfor(k=j;kA++;$	4	CO1
Q 5	Explain the P, NP, NP-hard, NP-complete classes? Give relationship between them?	4	CO4
	SECTION B (4Qx10M= 40 Marks)		·
Q 6	$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} B = \begin{bmatrix} 3 & 4 \\ 5 & 1 \end{bmatrix} \text{ devise the algorithms to compute AxB with the following conditions.}}$ a) Algorithm-1's recurrence should be $8T\left(\frac{n}{2}\right) + \Theta(n^2)$ b) Algorithm-2's recurrence should be $7T\left(\frac{n}{2}\right) + \Theta(n^2)$	10	CO1,CO 2

Q 7	Let $G = (V, E)$ where $V = \{1, 2, 3, 4\}$ and $E = \{(1, 2), (2, 3), (2, 4), (3, 4)\}$ and suppose that $k = 3$, devise an algorithm such that adjacent nodes get different colors.	10	CO3
Q 8	Devise the algorithm to find k'th smallest element in given unsorted array of 'n' elements with $O(n)$ time complexity.	10	CO2
Q 9	Compute the MST using Prim's algorithm	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q10	Compute the best way to multiply a chain of matrices with the dimensions 4X10 10X3 3X12 12X20 20X7. Show your work.	20	CO3
Q11	Let T be a text of length n, and let P be a pattern of length m. Describe an O(n+m) time method for finding the longest prefix of P that is a substring of T. (OR)	20	CO4
	How the failure function of KMP algorithm works?		