Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Program: BA-H-ECO-V

Subject/Course: Applied Econometrics

Course Code: ECON 3012

Max. Marks: 100 Duration: 3 Hours

Semester: V

Instructions:

	SECTION A 10Qx2M=20Marks		
Q 1	BLUE stands for (i) Best Linear Unbiased Estimator. (ii) Biased Linear Unit Estimator. (iii) Bohr's Linear Unbiased Estimator. (iv) Best Linear Unit Estimator.	2	CO1
Q 2	 An estimator is unbiased if (i) Its expected value is the true value of the parameter. (ii). Its expected value is not the true value of the parameter. (iii). Its unexpected value is the true value of the parameter (iv). None of the above. 	2	CO1
Q 3	 An estimator is consistent if (i) It converges to the true value as the sample size remains same. (ii) It converges to the true value as the sample size gets smaller. (iii) It converges to the true value as the sample size gets larger. (iv) All of the above 	2	CO1
Q 4	The most used method for estimation in econometrics is (i) OLS. (ii) GLS.	2	

	(iii) MLE.		
	(iv) GMM.		
Q 5	The three key ingredients of econometrics are		
	(i) Economic theory.		
	(ii) Economic data.	2	CO1
	(iii) Statistical method.	2	COI
	(iv) All of the above.		
Q 6	Which is branch of econometrics?		
	(i) Applied Econometrics		
	(ii) Theoretical Econometrics	2	CO1
	(iii) Both (i) and (ii)		
	(iv) Neither (i) nor (ii)		
Q 7	Apart from regression model, econometrics relies on		
	(i) Null hypothesis.		
	(ii) Data testing.	2	CO1
	(iii) Data interpretation.	4	COI
	(iv) All the above.		
Q 8	For bi-variate classical linear regression model,		
ΥŸ	(i) \mathbf{R}^2 greater than square of correlation coefficient.		
	(ii) R^2 smaller than square of correlation coefficient.		~ ~ .
	(iii) R^2 equals to square of correlation coefficient.	2	CO1
	(iii)None of the above.		
Q 9	In OLS estimation, expected value of error term is		
	(i)greater than zero		~~ (
	(ii)less than zero	2	CO1
	(iii)Zero		
0.10	(iv)Any of the above \mathbf{P}^2 is the measure of		
Q 10	R^2 is the measure of (i)% variance of the response variable has been explained by the control		
	variable(s).		
	(ii)% mean of the response variable has been explained by the control		
	variable(s).	2	CO1
	(iii) % median of the response variable has been explained by the control		
	variable(s).		
	(iv)All of the above.		
	SECTION B		
<u> </u>	4Qx5M= 20 Marks		
Q 1	Write down the remedial measures to remove the heteroscedasticity	5	CO2
	problem in model.		

Q 2	Interpret the below regression estimations:						
	Dependent Variable: OUTPUT Method: Least Squares Sample: 1 51 Included observations: 51				5	CO2	
	Coefficient Std. Error t-Statistic Prob.						
	С	233621.5	1250364.	0.186843	0.8526		
	LABOR	47.98736	7.058245	6.798766	0.0000		
	CAPITAL	9.951890	0.978116	10.17455	0.0000		
Q 3	Do you think the below estimated regression model possess the heteroscedasticity problem? Explain.						
	Heteroskedasticity Test: Breusch–Pagan–Godfrey F-statistic 2.823820 Prob. F(7,42) 0.0167 Obs*R-squared 16.00112 Prob. Chi-Square(7) 0.0251 Scaled explained SS 10.57563 Prob. Chi-Square(7) 0.1582 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 10/05/09 Time: 13:14 Sample: 1 50 Included observations: 50					5	CO2
		Coefficient	Std. Error	t-Statistic	Prob.		
	С	16.68558	110.1532	0.151476	0.8803		
	RELIGION	-0.134865	0.631073	-0.213707	0.8318		
	PRICE	0.286153	0.162357	1.762492	0.0853		
	LAWS	-8.566472	17.36257	-0.493387	0.6243		
	FUNDS	24.30981	20.33533	1.195447	0.2386		
	EDUC	-1.590385	1.457893	-1.090879	0.2815		
	INCOME	0.004710	0.003325	1.416266	0.1641		
	PICKET	-0.576745	0.308155	-1.871606	0.0682		
Q 4	Explain why a	djusted R ² is the	e better indicat	or of goodness	s of fit than R ² ?	5	CO2
				FION-C =30 Marks	I		
Q 1	Discuss different types of regression techniques with example and proper						
	mathematical notation. OR						
						10	CO3
		lation problems ferent techniqu			imations? n the regression		
Q 2	Write down different estimations?		es to detect au	tocorrelation in	n the regression	10	CO3

	1. Total Sum Square			
	2. Explained Sum Square			
	3. Residual Sum Square			
		SECTION-D x15M= 30 Marks		
Q 1	Derive the β co-efficient of bi-variate c			
	OR			
	For an airline industry, the number of pa			
	been given as follows:			
	Number of passengers	Cost (\$ 1,000)		
	(X)	(Y)		
	16	5.1	15	CO4
	20	5.2		
	23	5.4		
	29	5.8		
	35	5.9		
	42	6.1		
	Calculate β_1 .			
Q 2	Why multicollinearity problems happen in the regression estimations?Write down different techniques to detect multicollinearity?Write down the remedial measures to remove the multicollinearityproblem in model.		15	CO3