Name:

Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

End Semester Examination – December, 2022

Program: MBA Finance Subject/Course: Financial Econometrics

Course Code: FINC8009

Semester: III Max. Marks: 100 Duration: 3 Hours

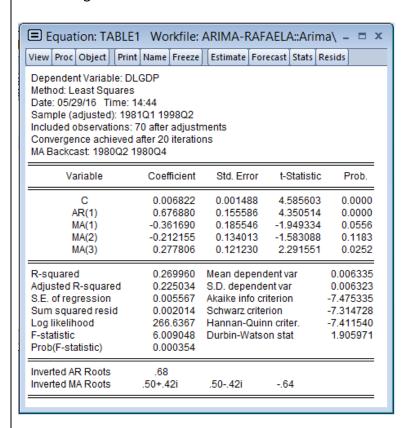
Q.No.	Section A	10Q×2M=20M	COs
	Question	Marks	COs
1	The numerical score assigned to the credit rating of a bond is best described as what type of number? (a) Continuous (b) Cardinal (c) Ordinal (d) Nominal	2	CO 1
2	Suppose that we wanted to sum the 2020 returns on ten shares to calculate the return on a portfolio over that year. What method of calculating the individual stock returns would enable us to do this? (a) Simple (b) Continuously compounded (c) Neither approach would allow us to do this validly (d) Either approach could be used and they would both give the same portfolio return	2	CO 1
3	Consider a bivariate regression model with coefficient standard errors calculated using the usual formulae. It varies positively with the square root of the residual variance (s) (i) It varies positively with the spread of X about its mean value (ii) It varies positively with the spread of X about zero (iii) It varies positively with the sample size T Which of the following statements is/are correct regarding the standard error estimator for the slope coefficient? (a) (i) only (b) (i) and (iv) only (c) (i), (ii) and (iv) only (d) (i), (iii), (iiii) and (iv).	2	CO 1
4	In a time series regression of the excess return of a mutual fund on a constant and the excess return on a market index, which of the following statements should be true for the fund manager to be considered to have "beaten the market" in a statistical sense?	2	CO 1

	 -		
	 (a) The estimate for α should be positive and statistically significant (b) The estimate for α should be positive and statistically significantly greater than the risk-free rate of return (c) The estimate for β should be positive and statistically significant (d) The estimate for α should be negative and statistically significant. 		
5	What result is proved by the Gauss-Markov theorem? (a) That OLS gives unbiased coefficient estimates (b) That OLS gives minimum variance coefficient estimates (c) That OLS gives minimum variance coefficient estimates only among the class of linear unbiased estimators (d) That OLS ensures that the errors are distributed normally	2	CO1
6	The type I error associated with testing a hypothesis is equal to (a) One minus the type II error (b) The confidence level (c) The size of the test (d) The size of the sample	2	CO1
7	Which of the following is a correct interpretation of a "95% confidence interval" for a regression parameter? (a) We are 95% sure that the interval contains the true value of the parameter (b) We are 95% sure that our estimate of the coefficient is correct (c) We are 95% sure that the interval contains our estimate of the coefficient (d) In repeated samples, we would derive the same estimate for the coefficient 95% of the time	2	CO1
8	Which of the following statements is correct concerning the conditions required for OLS to be a usable estimation technique? (a) The model must be linear in the parameters (b) The model must be linear in the variables (c) The model must be linear in the variables and the parameters (d) The model must be linear in the residuals	2	CO1
9	Which of the following is NOT a good reason for including a disturbance term in a regression equation? (a) It captures omitted determinants of the dependent variable (b) To allow for the non-zero mean of the dependent variable (c) To allow for errors in the measurement of the dependent variable (d) To allow for random influences on the dependent variable	2	CO1
10	Which of the following is NOT correct with regard to the <i>p</i> -value attached to a test statistic? (a) <i>p</i> -values can only be used for two-sided tests (b) It is the marginal significance level where we would be indifferent between rejecting and not rejecting the null hypothesis	2	CO1

			1
	(c) It is the exact significance level for the test		
	(d) Given the <i>p</i> -value, we can make inferences without referring to statistical tables		
1.	Each question will carry 5 marks		
2.	Instruction: Write short/ brief notes		
	Section-B		
		4Q×5M=20M	
4	Provide an example of a non-linear regression model and explain why it is non-linear.	_	CO
1.		5	2
	Explain in details what do you mean by by i) heteroskedasticty ,ii) serial correlation		СО
2.	Explain in details in at as you mean by by i, instance as a surface as in a surface as a surface	5	2
3.	Explain various measures, which are part of descriptive statistics.	5	СО
			2
	Model		
ı	$y_i = \beta_0 + \beta_1 x_i + u_i$		
4.	$ln(y_i) = \beta_0 + \beta_1 x_i + u_i$	5	CO
4.	$ln(y_i) = \beta_0 + \beta_1 ln(x_i) + u_i$	3	3
ı			
	$y_i = \beta_0 + \beta_1 ln(x_i) + u_i$		
ı	1		
	Interpret β_1 in each of the model.		
	Section-C		
		T	<u> </u>
Q.No.		3Q×10M=30M	
ı	Comment the following output from the two generation model whose wage is the		
ı	Compare the following output from the two regression model, where wage is the dependent variable and educ is years of education.		
ı	·		
1	Model 1: OLS, using observations 1-526 Dependent variable: wage	10	CO
ı	coefficient std. error t-ratio p-value		3
ı	const -0.904852 0.684968 -1.321 0.1871		
ı	educ 0.541359 0.0532480 10.17 2.78e-022 ***		
		II.	

	Mean dependent var							
	Sum squared resid	5980.682	S.E. of reg	gression	3.378390			
	R-squared F(1, 524)	0.164758	Adjusted R-	-squared	0.163164			
	F(1, 524) Log-likelihood	103.3627	P-value(F)	- and an	2.78e-22			
	Schwarz criterion	2783.954	Hannan-Ouir	n	2778.764			
			£					
	Compare the above rewage and educ is conv	erted to logar g observatio	ithm.	he following	g regression m	odel output, where		
	Dependent variable:							
			. error t-r	_				
	const 0.583 educ 0.082							
	educ 0.082	27444 0.0	0756669 10.	.94 3.	27e-025 ***			
	Mean dependent var	1.623268	S.D. depend	dent var	0.531538			
	Sum squared resid	120.7691	S.E. of reg	gression	0.480079			
	Sum squared resid R-squared F(1, 524)	0.185806	Adjusted R-	-squared	0.184253			
	r(1, 324) Log-likelihood	-359 3781	P-Value(F) Akaike crit	erion	722 7561			
	Log-likelihood Schwarz criterion	731.2867	Hannan-Quir	n	726.0962			
	Log-likelihood for	101	2 22					
	Log-likelihood loi	wage121	3.22					
	Interpret the regressio is a better model speci		of wage in both	the models	. Do you think	the second model		
	Dependent Variable: ERI Method: Least Squares Date: 08/21/18 Time: 21 Sample (adjusted): 1986 Included observations: 38	1:17 M05 2018M03	ents					
	Variable	Coefficient	Std. Error	t-Statistic	Prob.			
	С	1.326002	0.475481	2.788762	0.0056			
	ERSANDP	1.280799	0.094354	13.57434	0.0000			
	DPROD	-0.303032	0.736881	-0.411236	0.6811			
	DCREDIT	-0.025364	0.027149	-0.934243	0.3508			CO
2	DINFLATION	2.194670	1.264299	1.735879	0.0834		10	
	DMONEY DSPREAD	-0.006871 2.260064	0.015568 4.140284	-0.441384 0.545872	0.6592 0.5855			3
	RTERM	4.733069	1.715814	2.758498	0.0061			
	D. coursed	0.245205	Mana danarda	- t	4.470054			
	R-squared Adjusted R-squared	0.345205 0.332982	Mean depender S.D. dependent		1.476851 9.605408			
	S.E. of regression	7.844847	Akaike info crite		6.978257			
	Sum squared resid	23078.11	Schwarz criterio		7.060723			
	Log likelihood	-1328.336	Hannan-Quinn	criter.	7.010970			
	F-statistic	28.24264	Durbin-Watson	stat	2.097394			
	Prob(F-statistic)	0.000000						
	Interpret the above rethere is a scope of im	-			e estimated th	ne correct model or		

3	What do you mean b Econometrics. Specif						10	CO3
Q.No			Section	on-D			2Q×15M=30M	
	An analyst has estim	ated the follo	wing the CA	APM regressi	on. The o	utput is given below		
	Dependent Variable: ERI Method: Least Squares Date: 08/20/18 Time: 20 Sample (adjusted): 2002 Included observations: 19	0:54 M02 2018M02	nents					
	Variable	Coefficient	Std. Error	t-Statistic	Prob.			
1	C ERSANDP	-0.955984 1.889755	0.793085 0.191620	-1.205400 9.861972	0.2295 0.0000		15	CO4
	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) a. Interpret the above reg		Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion en criter. on stat	-0.292935 13.45156 7.640014 7.673824 7.653706 2.518490			
2	b. As an Investor, you will A researcher is into collected a sample of a dummy for female married: the All varia The researcher obtain Dependent Variable: WA Method: Least Squares Sample: 1 526 Included observations: 5	erested in a of cross section of gender and or gender and or gender and or gender of g	ssessing the mal data on a dummy,v ogarithm.	e driving fa WAGE and e which takes	ctors of Neducation, value 1 if	experience and	15	CO4
	Variable	Coefficient	Std. Error	t-Statistic	Prob.			
	C EXPER EDUC FEMALE	-1.734481 0.064242 0.602580 -2.155517	0.753620 0.010400 0.051117 0.270305	-2.301532 6.176894 11.78817 -7.974374	0.0218 0.0000 0.0000 NA			


R-squared	0.309304	Mean dependent var	5.896103
Adjusted R-squared	NA	S.D. dependent var	3.693086
S.E. of regression	NA	Akaike info criterion	5.094053
Sum squared resid	4945.672	Schwarz criterion	5.126489
Log likelihood	-1335.736	Hannan-Quinn criter.	5.106753
F-statistic	77.91966	Durbin-Watson stat	1.813730
Prob(F-statistic)	0.000000		

- a) Is the model significant in the overall? Justify your anwer . (3 marks)
- b) How much is the value of the adjusted R squared in this model? (3 marks)
- c) Compute the standard error of the regression .(3 marks)
- d) Interpret the parameters of the model (6 marks)

Can the researcher infer from the above output that the elesticity of wage to experiece is different for female individuals? Justify your answer

Or

You are given the following output of different model specification of ARIMA model for forecasting GDP.

iew Proc Object Prin	t Name	Freeze	Estimate	Forecast	Stats	Resids	
Dependent Variable: D Method: Least Squares Date: 05/29/16 Time: Sample (adjusted): 19/ ncluded observations: Convergence achieved MA Backcast: 1980Q3	14:46 31Q1 199 70 after after 28	adjustn					
Variable	Coeff	icient	Std. Err	or t-s	Statisti	c F	Prob.
С	0.00	6795	0.0013	67 4.9	97213	2 0	.0000
AR(1)	0.69	2728	0.2028	98 3.4	11416	5 0	.0011
MA(1)	-0.25	4315	0.2435	68 -1.0)4412	4 0	.3002
MA(2)	-0.16	2587	0.1607	78 -1.0)1125	3 0	.3156
R-squared	0.21	8823	Mean dep	endent v	ar	0.00	06335
djusted R-squared	0.18	3315	S.D. depe	endent va	Г	0.00	06323
S.E. of regression	0.00	5714	Akaike inf	fo criterio	n	-7.43	36204
Sum squared resid	0.00	2155	Schwarz	criterion		-7.30	7719
og likelihood		2671	Hannan-(Quinn crit	er.	-7.38	35168
-statistic		2620	Durbin-W	atson sta	ıt	2.07	73474
Prob(F-statistic)	0.00	0930					
nverted AR Roots	.69						
nverted MA Roots	.55		30				

iew Proc Object Prin	t Name	Freeze	Estimate	Forecast	Stats	Resids	
Dependent Variable: D Method: Least Squares Date: 05/29/16 Time: Sample (adjusted): 198 ncluded observations: Convergence achieved MA Backcast: 1980Q4	14:47 31Q1 199 70 after	adjustr					
Variable	Coeff	icient	Std. Err	or t-S	Statisti	c F	Prob.
С	0.00	6726	0.00132	21 5.0	9287	2 0	.0000
AR(1)	0.63	1409	0.16137	74 3.9	1270	4 0	.0002
MA(1)	-0.30	4829	0.21655	58 -1.4	10760	4 0	.1639
R-squared	0.20	4555	Mean dep	endent v	ar	0.0	06335
djusted R-squared	0.18	0810	S.D. depe	ndent va	r	0.00	06323
S.E. of regression	0.00	5723	Akaike inf	o criterio	n	-7.4	46676
Sum squared resid	0.00	2195	Schwarz o	criterion		-7.3	50312
og likelihood	263	6337	Hannan-0	Quinn crit	er.	-7.40	08399
-statistic	8.61	4790	Durbin-W	atson sta	ıt	1.93	30923
Prob(F-statistic)	0.00	0468					
nverted AR Roots	.63						
nverted MA Roots	.30						

Find out which model is the best model to forecast GDP.