Name: Enroln	nent No:	UPES UNIVERSITY OF TOMORROW
	UNIVERSITY OF PETROLEUM AN	
Program: BA, Economics (Hons.) Course code:		Semester: III Course code: ECON2026
1 ime:	SECTION A	Max. Marks: 100
1. Eacl	h Question will carry 2 Marks	
2. Inst	ruction: Select the correct answer(s)	
		СО
Q1	Find the domains of the functions defined by the following	g equations:
	a. $y = \sqrt{5 - x}$ b. $y = \frac{2x - 1}{x^2 - x}$ c. $y = \sqrt{\frac{x - 1}{(x - 2)(x + 3)}}$ d. $y = \frac{3x + 6}{x - 2}$ e. $y = \frac{3x + 6}{x - 2}$	CO1
	f. $y = \frac{1}{x+3}$ g. $y = \sqrt{2x+4}$ h. $y = \sqrt{x}$ i. $y = 1 - \sqrt{x+2}$ j. $y = \sqrt{5-x}$	
1 Facl	h question will carry 5 marks	
	ruction: Write short / brief notes	
Q11.	Find the equilibrium price and quantity for the following a. $D = 75 - 3P$, $S = -20 + 2P$ b. $D = 100 - 0.5P$, $S = -10 + 0.5P$	CO2
Q12.	Compute the following limits: a. $lim_{x\to 2}(x^2 + 3x - 5)$ b. $lim_{y\to -3}(1/y + 8)$	CO2
Q13.	Find the derivative of the following function $y = \sqrt{x + \sqrt{x} + \sqrt{x}}$	CO2
Q14.	Find $\frac{d^2y}{dx^2}$ when $y = x^a + x^{-a}$	CO2
	h Question carries 10 Marks.	
	ruction: Write long answer	
Q 15.	For the following equations, find $\frac{dy}{dx}$ by implicit differ	entiation: CO3

	a. $xy = 1$	
	b. $x - y + 3xy = 2$ c. $y^6 = x^5$	
	d. $2x^2 + 6xy + y^2 = 18$	
Q16.	Find the extreme value (s) of the following functions, and determine whether they are maxima	
	or minima:	
	a. $z = x^2 + xy + 2y^2 + 3$	CO3
Q17.	b. $z = -x^2 - y^2 + 6x + 2y$ Given $U = (X + 2)$. $(y + 1)$ and $P_x = 4$, $P_y = 6$ and $M = 130$:	
Q17.		
	a. Write the Lagrangian function.	
	b. Find the optimal levels of purchase x^* and y^* ?	
	c. Is the second-order sufficient condition for maximum satisfied?	
1	SECTION-D	
	Question carries 15 Marks. action: Write long answer	
Q18	Solve the following system of equations using appropriate theorem of Matrix Inversion:	
X ¹⁰	sorve the ronowing system of equations using appropriate theorem of what inversion.	
	a. $2x - 3y = 3$, $3x - 4y = 5$	
	b. $2x - 3y = 8$, $3x - 4y = 11$	CO4
	c. $2x - 3y = 0, 3x - 4y = 0$	
Q19	Let the <i>IS</i> equation be	
	$Y = \frac{A}{1-b} - \frac{g}{1-b}i$	
	Where $1 - b$ is the marginal propensity to save, g is investment sensitivity to interest rates, and A is an aggregate of exogenous variables. Let the <i>LM</i> equation be	
	$Y = \frac{M_0}{k} + \frac{l}{k}i$	
	Where k and l are income and interest sensitivity of money demand, respectively, and M_0 is the real money balances.	
	If $b = 0.7$, $g = 100$, $A = 252$, $k = 0.25$, $l = 200$, and $M_0 = 176$, then	
	 a. Write the <i>IS</i> – <i>LM</i> system in matrix form. b. Solve for <i>Y</i> and <i>i</i> by matrix inversion. 	