Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2022

Course: Optimization Techniques Program: BBA CORE OM Course Code: DSIT 2012 Semester: III Time: 03 hrs. Max. Marks: 100

Instructions: Usage of calculator allowed.

	SECTION A 10Qx2M=20Marks					
S. No.	Marks	CO				
Q 1	Fill in the blanks, each carry 2 marks.					
1.1	Operations research is ato problem solving for executive management.	2	CO1			
1.2	Goal programming is applied for the situations which have	2	CO1			
1.3	refers to problems in which objective function is quadratic in form while the constraints are linear.	2	CO1			
1.4	, which is essence of operations research, do not take into account qualitative factors or emotional factors which are quite real.	2	CO1			
1.5	is a condition that exists when there is no solution to an linear programming problem that satisfies all the constraints and non-negativity restrictions.	2	CO1			
1.6	In the transportation model, the on a given route is directly proportional to the number of units shipped on that route.	2	CO1			
1.7	A network is defined as a set of which are connected by	2	CO1			
1.8	The variables which specify the condition of decision process and summarize the current 'status' of the system are called	2	CO1			
1.9	criterion provides the decision-maker with optimistic criterion.	2	CO1			
1.10	In the queuing model, the service discipline followed is	2	CO1			
	SECTION B					
	4Qx5M= 20 Marks					
2.1	Distinguish between linear and non-linear programming.	5	CO2			
2.2	Write a short note on branch and bound algorithm using example.					

2.3	Explain the multiple objective optimization problem using relevant business examples.							CO2
2.4	Discuss the gravity location model for facility location planning.							CO2
			SF	ECTION-C				
			3Qx1	0M=30 Mai	rks			
3.1	Describe the ec	10	CO3					
8.2	Find and classify the stationary points of the function							CO3
	$f(x, y) = x^2 + 6y - 3y^2 + 10$						10	
3.3	Explain the imp	10	CO3					
			SI	ECTION-D				
			2Qx1	5M= 30 Ma				
	Five projects are being evaluated over a 3-year planning horizon. The following table gives the expected returns for each project and the associated yearly expenditures.							
	Expenditures (\$ million)/year Returns							
	Project	1	2		3	(\$ million)		
	1	6	2		9	30		CO4
	2	3	8	;	12	50	15	
	3	5	10	0	4	40		
	4	9	6	;	3	20		
	5	10	9	,	7	25		
	Available funds (\$ million)	40	30	0	50			
	Formulate the ILP model by constructing the appropriate parameter table.							
4.2	Consider the assignment problem having the following cost table.							
	Task 1 2 3 4							
		Α	8	6	5	4 7		
		B	6	5	3	4	15	CO4
	Assignee	C	7	8	4	6	-	
		D	6	7	5	6	1	1