

(e)	The break-even point is: a) adding processes to meet the point of changing product demands. b) improving processes to increase throughput. c) the point in dollars or units at which cost equals revenue. d) adding or removing capacity to meet demand. e) the total cost of a process alternative.	2	CO1
(f)	Effective capacity is: a) the capacity a firm expects to achieve, given the current operating constraints. b) the percentage of design capacity actually achieved. c) the percentage of capacity actually achieved. d) actual output. e) efficiency.	2	CO1
(g)	Evaluating location alternatives by comparing their composite (weightedaverage) scores involves a) factor-rating analysis. b) cost-volume analysis. c) transportation model analysis. d) linear regression analysis. e) crossover analysis.	2	CO1
(h)	Scheduling refers to specifying A. The sequence that jobs must be completed B. The due date for each job C. The start and completion times of jobs D. The makespan of each job	2	CO1
(i)	The Shortest Processing Time (SPT) rule A. Ensures that due dates are met B. Maximizes average flow-time C. Minimizes resource utilization D. Minimizes work in process inventory	2	CO1
(j)	A requirement of Johnson's two-resource sequencing rule is A. All jobs must begin at the same time B. Jobs must be processed through each work center in the same job sequence C. Only two jobs can be processed at a time through each work center D. Total processing time must be minimized	2	CO1
SECTION B4Q×5M=20 Marks			
	Attempt all questions, some questions has option, kindly attempt any one from the option		

Q2	The Circuit Town store in sells about 10 digital cameras a day (almost a constant quantity). Lead time for camera delivery is normally distributed with a mean time of 6 days and a standard deviation of 1 day. A 98% service level is set. Find the ROP.	5	CO2
Q3	What are the various factors that determine the service location strategy? OR Differentiate between level output plan and chase plan. Which plan would be preferable if a. Cost of inventory holding is very high b. Cost of production rate change is very high	5	CO2
Q4	Esmail Mohebbi, owner of European Ignitions Manufacturing, needs to expand his capacity. He is considering three locations-Athens, Brussels, and Lisbonfor a new plant. The company wishes to find the most economical location for an expected volume of 2,000 units per year. Mohebbi conducts locational costvolume analysis, given that fixed costs per year at the sites are $\$ 30,000, \$ 60,000$, and $\$ 110,000$, respectively; and variable costs are $\$ 75$ per unit, $\$ 45$ per unit, and $\$ 25$ per unit, respectively. The expected selling price of each ignition system produced is $\$ 120$.	5	CO 2
Q5	Discuss the various types of layout with examples?	5	CO2
$\begin{gathered} \text { SECTION-C } \\ \text { 3Qx10M=30 Marks } \end{gathered}$			
Q	Attempt all questions, some questions has option, kindly attempt any one from the option		
Q6	Alyssa's Custom Cakes currently sells 5 Birthday, 2 Wedding and 3 Specialty Cakes each month for $\$ 50, \$ 150$ and $\$ 100$ each respectively. It takes 90 minutes to produce a birthday cake, 240 minutes to produce a wedding cake and 60 minutes to produce specialty cakes. Alyssa's current TFP is 1.25 A. Assuming each cake costs the same to make, what is the average cost to produce a cake B. Calculate Alyssa's labor productivity ratio in dollars per hour for each type of cake C. Based solely on the labor productivity ratio, which cake should Alyssa try to sell the most D. Based on your answer in part (a), is there a type of cake Alyssa should stop selling OR Calculate economic order quantity (EOQ) for the following data	10	CO 3

A	6	8
B	2	6
C	8	18
D	3	15
E	9	23

OR

Uber Technologies, Inc.

The $\$ 41$ billion dollar firm Uber Technology, Inc., is unsettling the traditional taxi business. In over 40 countries and 240 markets around the world, Uber and similar companies are challenging the existing taxi business model. Uber and its growing list of competitors, Lyft, Sidecar, and Flywheel in America, and fledging rivals in Europe, Asia, and India, think their smart phone apps can provide a new and improved way to call a taxi. This disruptive business model uses an app to arrange rides between riders and cars, theoretically a nearby car, which is tracked by the app. The Uber system also provides a history of rides, routes, and fees as well as automatic billing. In addition, driver and rider are also allowed to evaluate each other. The services are increasingly popular, worrying established taxi services in cities from New York to Berlin, and from Rio de Janeiro to Bangkok. In many markets, Uber has proven to be the best, fastest, and most reliable way to find a ride. Consumers worldwide are endorsing the system as a replacement for the usual taxi ride. As the most established competitor in the field, Uber is putting more cars on the road, meaning faster pickup times, which should attract even more riders, which in turn attracts even more drivers, and so on. This growth cycle may speed the demise of the existing taxi businesses as well as provide substantial competition for firms with a technology-oriented model similar to Uber's. The Uber business model initially attempts to bypass a number of regulations and at the same time offer better service and lower fees than traditional taxis. However, the traditional taxi industry is fighting back, and regulations are mounting. The regulations vary by country and city, but increasingly special licensing, testing, and inspections are being imposed. Part of the fee charged to riders does not go to the driver, but to Uber, as there are real overhead costs. Uber's costs, depending on the locale, may include insurance, background checks for drivers, vetting of vehicles, software development and maintenance, and centralized billing. How these overhead costs compare to traditional taxi costs is yet to be determined.

	Therefore, improved efficiency may not be immediately obvious, and contract provisions are significant. In addition to growing regulations, a complicating factor in the model is finding volunteer drivers at inopportune times. A sober driver and a clean car at 1:00 a.m. New Year's Eve does cost more. Consequently, Uber has introduced "surge" pricing. Surge pricing means a higher price, sometimes much higher, than normal. Surge pricing has proven necessary to ensure that cars and drivers are available at unusual times. These higher surge prices can be a shock to riders, making the "surge price" a contentious issue.	Discussion Questions 1. The market has decided that Uber and its immediate competitors are adding efficiency to our society. How is Uber providing that added efficiency? 2. Do you think the Uber model will work in the trucking industry? 3. In what other areas/industries might the Uber model be used

