UNIVERSITY OF PETROLEUM \& ENERGY STUDIES

End Semester Examination - December 2022
Program: BBA
Semester: I
Subject/Course: Business Mathematics
Course Code: DSQT1001
Max. Marks: 100

Q.No.	
	$A^{c}=?$
1	(a) $\cup-A$ (b) A^{c} (c) \cup (d) A

Which of the following two sets are equal?
(a) $A=\{1,2\}$ and $B=\{1\}$

2 (b) $A=\{1,2\}$ and $B=\{1,2,3\}$
(c) $A=\{1,2,3,4\}$ and $B=\{2,1,3,4\}$
(d) $A=\{1,2,4\}$ and $B=\{1,2,3\}$

If $A=\{5,6,7,8\}$ and $B=\{7,8,9\}$ then $A \cup B$ is equal to
(a) $\{5,6,7,8,9\}$
(b) $\{5,6,7\}$
(c) $\{7,8,9\}$
(d) None of these

If A and B are square matrices, then $(A B)^{\prime}=$
(a) $\mathrm{B}^{\prime} \mathrm{A}^{\prime}$
(b) $A^{\prime} B^{\prime}$
(c) $A B^{\prime}$
(d) $A^{\prime} B^{\prime}$

If $\left[\begin{array}{cc}2-x & 2 \\ 8 & 6\end{array}\right]=\left[\begin{array}{ll}4 & 2 \\ 8 & 6\end{array}\right]$ then $x=$
(a) ± 6
(b) 6
(c) -2
(d) 7

6	Next term of the AP 2, 6, 10, \qquad is (a) 7 (6) 6 (c) 14 (d) 2	2	CO1
7	if $p-1, p+3,3 p-1$ are in $A P$, then p is equal to (a) 4 (b) -4 (c) 2 (d) -2	2	CO1
8	If $f(x)=(x+1) / x$, then derivative of $f(x)$ is (a) $1 / x$ (b) $-1 / x$ (c) $-1 / x^{2}$ (d) $1 / x^{2}$	2	CO1
9	$\int 1 . \mathrm{dx}=$ (a) $x+k$ (b) $1+k$ (c) $x^{2}+\mathrm{k}$ (d) $\log x+k$	2	CO1
10	$\int \frac{d x}{\sqrt{x}}=$ (a) $\sqrt{x}+k$ (b) $2 \sqrt{x}+k$ (c) $\mathrm{x}+\mathrm{k}$ (d) $23 x^{3 / 2}+k$	2	CO1
	Section-B	$4 \mathrm{Q} \times 5 \mathrm{M}=20 \mathrm{M}$	
11	Differentiate: $\quad\left(a x^{2}+b x+c\right)(b x+c)$	5	$\begin{array}{\|l\|} \hline \mathrm{CO} \\ 2 \end{array}$
12.	The first term of a GP is 1 . The sum of the third term and fifth term is 90 . Find the common ratio of GP.	5	$\begin{aligned} & \mathrm{CO} \\ & 2 \end{aligned}$
13.	In a survey of 500 students, it was found that 300 had taken mathematics, 200 had taken physics, and 100 had taken mathematics \& physics. Find the number of students that had i) only mathematics iii) only physics	5	$\begin{aligned} & \mathrm{CO} \\ & 2 \end{aligned}$
14.	iv) A manufacturing company finds that the daily cost of producing x items of a product is given by $C(x)=240 x+8000$. If each item is sold for Rs. 400, find the minimum number that must be produced and sold daily to ensure no loss.	5	$\begin{aligned} & \mathrm{CO} \\ & 3 \end{aligned}$

Q.No.	Section-C	$3 \mathrm{Q} \times 10 \mathrm{M}=30 \mathrm{M}$	
15	$\begin{gathered} \text { If } \mathrm{A}=\left[\begin{array}{ll} 4 & 2 \\ 6 & 1 \end{array}\right] \quad \& \mathrm{~B}==\left[\begin{array}{cc} 1 & -2 \\ 0 & 8 \end{array}\right] \\ \text { Verify that } A B^{T}=B^{T} A^{T} \end{gathered}$	10	$\begin{aligned} & \mathrm{CO} \\ & 3 \end{aligned}$
16	Find the inverse of the given matrix $A=\left[\begin{array}{rrr} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{array}\right]$	10	$\begin{aligned} & \mathrm{CO} \\ & 3 \end{aligned}$
17	The average cost function (AC) for a product is given by $\mathrm{AC}=0.006 x^{2}-0.02 x-30+\frac{5000}{x}$; where x is the output. Find (i) the marginal cost function (ii) the marginal cost when 50 units are produced.	10	CO3

Q.No.	Section-D	$2 \mathrm{Q} \times 15 \mathrm{M}=30 \mathrm{M}$	
18	$\begin{array}{l}\text { The demand function for a product marketed by a company is } \mathrm{p}=\frac{80-x}{4} ; \text { where } \mathrm{x} \text { is the } \\ \text { number of units and } \mathrm{p} \text { is the price per unit. At what value of } \mathrm{x} \text { will there be maximum } \\ \text { revenue? What is this maximum revenue? }\end{array}$	15	CO 4
19	Solve the following system of equation with help of appropriate method.		
$3 x+y+2 z=2$			
$2 x-3 y-z=2$			
$x+2 y+z=-1$			

