Name: Enrolment No:		
Course Progra Course Instruc	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2021 Network Analysis Semester: m: \quad B. Tech- ECE Time: 03 h Code: ECEG $\mathbf{- 2 0 2 0}$ Max. Mark ctions: $($ i) Attempt all the sections.	II 100
Each Question will carry 4 Marks Instruction: Write briefly (5-6 lines)		
S. No		CO
Q 1	What are the open circuit impedance parameters of a two-port network? Why are they so called?	$\mathrm{CO2}$
Q 2	Briefly define for: (i) Rank of Graph (ii) Planner Graph (iii) Tree (iv) Twig	$\mathrm{CO3}$
Q 3	Explain minimum two properties of Hurwitz polynomial.	CO4
Q 4	Define Y-parameters. Determine the relationship between the Z and Y parameters.	CO2
Q 5	Define (i) Transfer impedance function (ii) Current transfer function	CO3
Each question will carry 10 marks Instruction: Attempt all the questions		
Q 1	Determine the load current using Millman's theorem. Network shown in Figure.	CO1
Q 2	Find the Thevenin's equivalent circuit for the electrical circuit given in the bridge network as,	CO1

	NodesBranches $\boldsymbol{v}_{(1)}$ (2) (2) (3) $(4)$$\left[\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ -1 & 0 & -1 & 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & -1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & -1\end{array}\right]$

SECTION-C

(40 Marks)
Each Question carries 20 Marks.
Instruction: Write long answer.

Q 1	Attempt both the parts: (a) Design all the possible trees. Also, determine the incidence matrix for the given graph. (1) (2) (b) Show the function $F(s)=\frac{(s+2)(\mathrm{s}+4)}{(\mathrm{s}+1)(\mathrm{s}+3)}$ is positive real function or not? (c) Check whether the given polynomial $P(s)=S^{4}+S^{3}+2 S^{2}+4 S+1$ is Hurwitz or not?	$\begin{gathered} \mathrm{CO} 4 \\ \\ \left(\begin{array}{c} (10+5+ \\ 5) \end{array}\right. \end{gathered}$
Q-2	Find the expression of voltage transfer function $G_{21}(s)=\frac{V_{2}(s)}{V_{1}(s)}$ for the network shown in Figure	C03 (20)

